摘要
神经网络由于具有良好的自学习和自适应能力,在非线性黑箱建模或系统辨识中有着广泛的应用,这些辨识模型有:多层感知器、径向基函数网和反馈网络等等.文中提出了基于小波神经网络模型的系统辨识方法.由于小波变换或分解所表现的良好的时频局部化特性,以及多尺度的功能,我们用规范正交的小波函数作为基函数网络中的基函数,得到所谓的小波神经网络.
Neural networks show good ability of selfadaption and selflearning, and is widely applied in nonlinear blackbox modeling and system identification. This paper proposes a wavelet neural networks based system identification method. Because of the time frenqency location characteristic and multiscale ability of wavelet transformation and muliresolution analysis, wavelet is used as the basic of the basis neural networks, and we call it wavelet neural networks. First the paper gives the general framework of the proplem of nonlinear blackbox modeling system identificaiton, then uses wavelet neural networks as the blackbox model, and at last the computer simulation results show that the method is practical.
出处
《信息与控制》
CSCD
北大核心
1998年第4期277-278,288,共3页
Information and Control
关键词
系统辨识
小波
神经网络
函数逼近
system identification, wavelet neural networks, fucntion approximation