期刊文献+

矿井不明水体突出过程的微震辨识技术 被引量:14

IDENTIFICATION OF WATER INRUSH PROCESS OF UNKNOWN WATER BODY USING MICROSEISMIC MONITORING TECHNIQUE
下载PDF
导出
摘要 以采动岩体微破裂产生的弹性波为信息源,应用弹性波与岩体破裂的相关理论与技术,探索地下采空区不明水体的蓄积和成灾过程。经研究发现,在突水灾害前存在确切的弹性波波速比VP/VS低值异常、振幅比VSH/VPH高值异常、震动主频低值异常、波形变异以及隔水岩墙主破裂发生前的微震频度异常。由此提出应用地面微震遥测技术,通过在线监测和分析采动岩体破裂被动震源或增设爆破主动震源所携带的信息,预测矿井不明水体突出灾害的技术思路,达到空间上控制全矿井范围的宏观监测、时间上在线连续监测和远离危险源的安全监测之目的。 The process of underground water accumulation and inrush based on the elastic waves generated by rock fracturing is investigated. It is found that before water inrush, there are a few distinct phenomena such as irregularity of wave velocity ratio Vp/Vs in the low value range, irregularity of amplitude ratio VSH/VPH in the high value range, and irregularity of major frequency in the low value range, waveform change, and quietness of microseismic activities before the fracturing of the main wall which bears water. It is proposed to use surface microseismic monitoring technique to detect unknown water body and reduce water inrush risks in deep mines. This technique can monitor and analyze the information carried in the seismic waves from either rock fracturing or blasting. The remote monitoring can be realized with the proposed method for the whole mine in real time for the monitoring is far way from the source, thus the presented method is deemed as a safe monitoring technique.
作者 李铁 纪洪广
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2010年第1期134-139,共6页 Chinese Journal of Rock Mechanics and Engineering
基金 国家重大基础研究发展计划(863)项目(2008AA062104)
关键词 采矿工程 煤矿 突水 微震监测技术 预测 mining engineering coal mine water inrush microseismic monitoring technique prediction
  • 相关文献

参考文献11

二级参考文献37

  • 1姜谙男,冯夏庭.由工程实例获取隧洞围岩最大变形的支持向量机方法[J].东北大学学报(自然科学版),2004,25(8):793-795. 被引量:8
  • 2卓越,南琛,邹兴亮,黄德琪.红外线超前探水技术的研究与应用[J].西部探矿工程,1996,8(3):30-32. 被引量:7
  • 3刘永平,程文楷.矿用红外测温技术的研究及其应用[J].煤炭科学技术,1996,24(7):38-40. 被引量:5
  • 4任美鄂 刘振中.岩溶学概论[M].北京:商务印书馆,1983..
  • 5吴如山 安艺敬一 李裕澈 卢寿德译.地震波的散射与衰减[M].北京:地震出版社,1993.1-50.
  • 6Vapnik V N. An overview of statistical learning theory[J]. IEEE Trans Neural Network,1999,10(5) : 988-999.
  • 7Suykens J A K, Vandewalle J. Least square support vector machine classifiers[J]. Neural Processing Letters,1999,9(3): 293-300.
  • 8Suykens J A K, Vandewalle J. Recurrent least squares support vector machines[J].IEEE Transactions on Circuits and System-Ⅰ, 2000,47(7): 1109-1114.
  • 9Amari S, Wu S. Improving support vector machine classifiers by modifying kernel functions[J]. Neural Networks,1999,12 (6): 783-789.
  • 10张大顺,郑世书.地理信息系统技术及其在煤矿底板水害预测中的应用[M].徐州:中国矿业大学出版社,1996.

共引文献176

同被引文献194

引证文献14

二级引证文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部