期刊文献+

飞秒激光诱导水光学击穿阈值 被引量:1

Femtosecond laser-induced optical breakdown threshold in water
下载PDF
导出
摘要 为了研究飞秒激光诱导水光学击穿阈值随激光脉冲参数的变化关系,采用四阶RungeKutta方法对飞秒激光诱导水光学击穿的椭球体模型进行了不同脉宽(40~540fs)、波长(400~1200nm)和光斑尺寸(0~200μm)下的数值模拟。通过控制变量法得出阈值光强与这些激光脉冲参数的关系曲线图,据此定性分析了阈值光强与激光脉冲参数的变化特征趋势。应用光强与功率、能量、辐照曝光量和电场强度之间的关系,得到了它们随激光脉冲参数脉宽、波长和光斑尺寸的动态关系,这为进一步研究飞秒激光与水和含水介质的相互作用提供了理论依据。 For studying the relationship between breakdown thresholds and laser parameters, numerical simulation for ellipsoidal time and space model of femtosecond laser-induced optical breakdown in water was done at different pulse duration (40 fs to 540 fs), wavelength (400 nm to 1 200 nm) and spot size (0 to 200 μm) with a Runge-Kutta method. The figures of threshold intensity as a function of pulse duration, wavelength or spot size were given via variable-controlled method. Some conclusions were presented about the relationship between threshold intensity and laser parameters. At last, the figures of threshold power, energy, radiant exposure or electric field strength as a function of pulse duration, wavelength or spot size were presented, which gives a further theoretical support for the study of femtosecond laser interacting with water and aqueous media.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2010年第1期49-52,共4页 High Power Laser and Particle Beams
基金 江苏省高校自然科学重大基金项目(09KJA14001)
关键词 飞秒激光 击穿阈值 RUNGE-KUTTA方法 femtosecond laser breakdown threshold Runge-Kutta method water
  • 相关文献

参考文献10

  • 1Feng Q, Moloney J V, Newell A C, et al. Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses[J]. Quantum Electron, 1997, 33(2) : 127-137.
  • 2倪晓武,陈笑,陆建.激光与液态物质相互作用机理的研究进展[J].激光技术,2002,26(4):258-261. 被引量:19
  • 3李明,张宏超,沈中华,陆建,倪晓武.激光导致水击穿和等离子体形成过程的物理分析[J].光子学报,2005,34(11):1610-1614. 被引量:16
  • 4Kennedy P K. A first order model for compution of laser-induced breakdown thresholds in ocular and aqueous media-part I : theory[J].Quantum Electron, 1 995, 31 (12) : 2241-2249.
  • 5Noack J, Vogel A. Laser induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density[J]. Quantum Electron ,1999, 35(8) :1156-1167.
  • 6Fan C H, Sun J, Longtin J P. Breakdown threshold and localized electron density in water induced by ultrashort laser pulses[J].Applied Physics, 2002, 91(4) :2530-2536.
  • 7Vogel A, Noack J, Huttman G, et al. Mechanisms of femtosecond laser nanosurgery of cells and tissues[J].Applied Physics B, 2005, 81 (8) : 1015-1047.
  • 8陈光华.飞秒激光与透明介质相互作用的非线性及应用[C]//西安:中国科学院西安光学精密机械研究所,2004.
  • 9王亚伟,王立峰,邓晓斌,刘莹,卜敏.飞秒激光诱导水光学击穿的椭球体模型[J].中国激光,2008,35(10):1491-1494. 被引量:3
  • 10Fan C H, Longtin J P. Modeling optical breakdown in dielectrics during ultrafast laser processing[J]. Appl Opt, 2001, 40(18) : 3124-3131.

二级参考文献24

共引文献34

同被引文献15

  • 1韩晓玉,杨小丽.激光大气击穿阈值的数值分析[J].强激光与粒子束,2005,17(11):1655-1659. 被引量:9
  • 2李明,张宏超,沈中华,陆建,倪晓武.脉冲激光导致水光学击穿阈值计算的简化模型[J].红外与激光工程,2005,34(6):660-663. 被引量:4
  • 3CHYLEK P, PENDLETON J D, PINNICK R G. Internal and nearsurface scattered field of a spherical particle at resonant conditions [J]. Applied optics, 1985, 24(23): 3940-3942.
  • 4PINNICK R G, CHYLEK P, JARZEMBSKI M, et al. Aerosolinduced laser breakdown thresholds: wavelength dependence [J]. Applied optics, 1988, 27(5): 987-996.
  • 5VOLKOV K, EMELYANOV V. Interaction of laser pulse with liquid droplet [C]∥28th International Symposium on Shock Waves. Manchester: Springer Berlin Heidelberg,2012: 265-271. 2012.
  • 6EFIMENKO E S, MALKOV Y A, MURZANEV A A, et al. Femtosecond laser pulseinduced breakdown of a single water microdroplet [J]. JOSA B, 2014, 31(3): 534-541.
  • 7MUSING A, RIEDEL U, WARNATZ J, et al. Laserinduced breakdown in air and behind droplets: A detailed MonteCarlo simulation [J]. Proceedings of the Combustion Institute, 2007, 31(2): 3007-3014.
  • 8YASHIRO H, SASAKI F, KAKEHATA M. Measurement of number density of water droplets in aerosol by laserinduced breakdown [J]. Applied Physics Express, 2010, 3(3): 036601.
  • 9AHN D, HA J, KIM D. Development of an optohydrodynamic process to remove nanoparticles from solid surfaces [J]. Applied Surface Science, 2013, 265: 630-636.
  • 10BENINCASA D S, BARBER P W, ZHANG J Z, et al. Spatial distribution of the internal and nearfield intensities of large cylindrical and spherical scatterers [J]. Applied Optics, 1987, 26(7): 1348-1356.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部