期刊文献+

基于频繁模式挖掘的实时供应链数据分析 被引量:1

Data analysis in real-time supply chain based on frequent pattern mining
下载PDF
导出
摘要 为了从海量的供应链实时数据中发掘隐性的、重要的业务关系,将频繁模式挖掘(FPM)引入到供应链实时数据分析,有利于提高决策的科学性与效率.提出了实时供应链体系结构,包括数据采集层、实时数据处理层与实时供应链应用层,阐述了实时数据采集与处理、频繁路径选择及频繁模式挖掘的方法.详细论述了频繁路径选择、工作流立方建立及频繁模式挖掘3个阶段实时数据处理的内容、原理与方法.结合某服装供应链分销管理,应用DBMiner工具进行了实证研究,结果表明,应用FPM技术进行供应链实时数据分析,可以高效地挖掘与利用实时数据,提高供应链运作的效率与供应链决策水平. In order to discover the hidden and important business relation, frequent pattern mining (FPM) was introduced into the field of real-time data analysis, which can improve the scientificity and efficiency of supply chain decision. The real-time supply chain framework was proposed, which include data capturing layer, real-time data processing layer, and real-time supply chain application layer. The methods of real- time data capturing and processing, frequent path selection, and frequent pattern mining were discussed. Real-time data processing content, principles and methods in frequent path selection, workflow cube and frequent pattern mining were expounded. A case study of distribution management in some clothes supply chain was conducted with DBMiner tools. Results show that FPM can efficiently mine and exploit real-time data and enhance the efficiency of supply chain operation and the level of supply chain decision.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第12期2259-2263,共5页 Journal of Zhejiang University:Engineering Science
基金 国家"863"高技术研究发展计划资助项目(2009AA04Z151) 浙江省科技计划资助项目(2006C11237)
关键词 实时供应链(RTSC) 数据分析 频繁模式挖掘(FPM) real-time supply chain(RTSC) data analysis frequent pattern mining (FPM)
  • 相关文献

参考文献9

  • 1TARANTILIS C D. Topics in real-time supply chain management [J ]. Computers & Operations Research, 2008, 35(11): 3393-3396.
  • 2RABIN S. The real-time enterprise, the real-time supply chain [J]. Information System Management, 2003 (9),20(2) :58 - 62.
  • 3LANBERT D M, COOPER M C. Issues in supply chain management [ J ]. Industrial Marketing Management, 2000, 29(1):65-83.
  • 4RAJANISH DASS. An efficient algorithm for frequent pattern mining for real-time business intelligence analytics in dense datasets[C] // Proceedings of the 39 Annual Hawaii International Conference on System Sciences, HICSS' 06. Kauai, HI, United States : Institute of Electrical and Electronics Engineers Computer Society,2006.
  • 5DASS, RAJANISH, MAHANTI, et al. An efficient technique for frequent pattern mining in real-time business applications[C]//38th Annual Hawaii International Conference on System Sciences. Big lsland, H1, United States: Institute of Electrical and Electronics Engineers Computer Society, 2005.
  • 6HAN, JIAWEI, GONZALEZ, et al. Warehousing and mining massive RFID data sets [C]//2nd International Conference on Advanced Data Mining and Applications, ADMA 2006, Xian : Springer Veriag, 2006.
  • 7岳昆,李维华,苏茜,刘惟一.XML查询中的频繁路径选择[J].云南大学学报(自然科学版),2007,29(3):241-246. 被引量:2
  • 8林森媚,谢伙生,白清源,谢丽聪,张莹.基于合并FP树的频繁模式挖掘算法[J].广西师范大学学报(自然科学版),2007,25(4):252-256. 被引量:3
  • 9TREBILCOCK, BOB. The real time supply chain[J]. Modern Materials Handling, 2003, 9(58): 57- 59.

二级参考文献18

  • 1赵艳铎,宋斌恒.基于逆向FP-树的频繁模式挖掘算法[J].计算机应用,2005,25(6):1385-1387. 被引量:8
  • 2岳昆,刘惟一.保持语义约束的XML文档规范化[J].云南大学学报(自然科学版),2005,27(4):300-304. 被引量:2
  • 3BRAY T,PAOLI J,SPERBERG-MCQUEEN C.Extensible markup language (XML) 1.0[EB/OL].[2006-06-20].http://www.w3.org/XML/2998/06/xmlspec-report-19980910.htm.
  • 4World Wide Web Consortium.XML Path Language (XPath) 1.0.W3C Recommendation[EB/OL].[2006-06-10].http://www.w3.org/TR/xpath.
  • 5REFSNES J E.XML DTD-An introduction to XML document type definitions[EB/OL].[2006-06-10].http://www.xmlfiles.com/dtd.
  • 6GOLDMAN R,WIDOM J DataGuide.Enable query formulation and optimization in semistructured databases[C].VLDB,1997,436-445.
  • 7MILO T,SUCIU D.Index structure for path expression[C].ICDT,1999,227-295.
  • 8KAUSHIK R,SHENOY P,BOHANNON P,et al.Exploiting local similarity for efficient indexing of paths in graph structured data[C].ICDE,2002,129-140.
  • 9YAN X,YU P S,HAN J.Graph indexing:A frequent structure based approach[C].SIGMOD,2004,335-346.
  • 10LI Q,MOON B.Indexing and querying XML data for regular path expressions[C].VLDB,2001,361-370.

共引文献3

同被引文献10

  • 1AGRAWAL R, SRIKANT R. Mining Sequential Patterns [ C ]//In Proceedings of the Eleventh International Con- ference on Data Engineering(ICDE 1995 ). Taipei: IEEE Computer Society Press, 1995:3-14.
  • 2MASSEGLIA F, PONCELET P, TEISSEURE M. Incremen- tal mining of sequential patterns in large database[ J]. Data and Knowledge Engineering,2003,46( 1 ) :97-121.
  • 3LIN M Y, LEE S Y. Incremental update on sequential pat-terns in large databases [ C]//Proceedings of 10th IEEE International Conference on Tools with Artificial Intelli- gence. Taipei : IEEE,2001:24-31.
  • 4RAJANISH Dass. An efficient algorithm for frequent pat- tern mining for real-time business intelligence analytices in dense datasets[ C ]//Proceedings of the 39 Annual Hawaii International Conference on System Sciences, HICSS' 06. Kauai, HI, United States : Institute of Electrical and Elec- tronics Engineers Computer Society,2006 : 145-147.
  • 5DURDICK D, CALIMLIM M, GEHRKE J. A maximal fre- quent itemset algorithm for transactional database [ C ]//In Proceedings of 17th international conference on Data En- gineering. Taipei: IEEE Computer Society Press, 2001 : 450-452.
  • 6陈晨,鞠时光.基于改进FP-tree的最大频繁项集挖掘算法[J].计算机工程与设计,2008,29(24):6236-6239. 被引量:14
  • 7万里,廖建新,朱晓民.一种时间序列频繁模式挖掘算法及其在WSAN行为预测中的应用[J].电子与信息学报,2010,32(3):682-686. 被引量:5
  • 8杨云,罗艳霞.FP-Growth算法的改进[J].计算机工程与设计,2010,31(7):1506-1509. 被引量:25
  • 9张海飞,曲豫宾,刘全.GIS技术在FTTx网络接入规划中的应用[J].武汉科技大学学报,2011,34(5):395-400. 被引量:2
  • 10郭平,刘潭仁.基于图结构的候选序列生成算法[J].计算机科学,2004,31(1):136-139. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部