摘要
研究复射影空间中拟全实极小子流形的谱几何,利用活动标架法并通过计算平均曲率向量的Laplacian,建立了仅与子流形内蕴几何量有关的特征值不等式,将相关结果推广到复射影空间中的一般子流形上,并获得了拟全实极小子流形存在u阶浸入的充要条件.
The authors studied the spactral geometry of quasi-totally real minimal submanifolds in a complex projective space.By means of the method of moving frames and caculating Laplacian of the mean curvature vector,the eigenvalue inequality for the submanifolds which only related to intrinsic geometric quality was established.This result generated correlation theorms to generic submanifolds in a complex projective space.Moreover,the authors also got one necessary and sufficient condition on u-order immersion of quasi-totally real minimal submanifolds.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2010年第1期15-20,共6页
Journal of Jilin University:Science Edition
基金
安徽省教育厅自然科学研究重点项目基金(批准号:KJ2008A05ZC)
关键词
复射影空间
拟全实
极小子流形
谱几何
特征值不等式
complex projective space
quasi-totally real
minimal submanifolds
spactral geometry
eigenvalue inequalities