期刊文献+

传统控制器实现有摩擦系统的大行程纳米定位(英文) 被引量:4

Long-Stroke Nanometer Positioning of Frictional Table System by Conventional Controller
下载PDF
导出
摘要 对于"伺服电机+滚珠丝杠"驱动机构,摩擦、饱和和高频振动等非线性因素是实现大行程无超调高精度点位(PTP)控制的主要障碍.针对这种驱动系统,在根据刚体动力学计算得到的线性传递函数的基础上,设计了高增益PID闭环控制系统和输入滤波器来实现大行程的纳米定位.配置闭环控制系统的极点为负实轴上的多重极点,避免了摩擦力补偿和双模控制策略的使用.为了避免驱动器饱和所导致的闭环系统响应超调现象,基于数字低通滤波器设计了闭环输入信号.实验结果表明,该定位系统可以实现大行程无超调纳米精度点位控制,10 nm^100mm定位响应的稳态误差不超过±5 nm. For a DC-motor and ball-screw-drive table system, the nonlinearities such as friction, saturation and high frequency resonance are the major obstacles to the achievement of high-precision and long-stroke point-to-point (PTP) positioning without overshoot. Based on the transfer function obtained according to rigid body dynamics of the ball screw mechanism, a high gain PID controller and an input filter was designed to realize long-range nanometer positioning. Parameters of the closed-loop control system were calculated by multi-poles placement so that neither friction compensation nor dual-mode control strategy was necessary. The input signal of the closed-loop system was designed based on digital low-pass filter to avoid large overshoot due to the actuator saturation. Experimental and simulated results demonstrate that the proposed system can achieve long-stroke nanometer positioning without producing any large overshoot, with the steady-state error within ±5 nm in PTP positioning from 100 mm down to 10 nm.
出处 《纳米技术与精密工程》 EI CAS CSCD 2010年第1期1-6,共6页 Nanotechnology and Precision Engineering
基金 黑龙江省博士后基金资助项目(LBH-Z07134) 哈尔滨工业大学优秀青年教师培养计划资助项目(HITQNJS2008013)
关键词 纳米定位 PID控制器 滚珠丝杠 nanometer positioning PID controller ball screw
  • 相关文献

参考文献14

  • 1Chang S B, Wu S H, Hu Y C. Submicrometer overshoot control of rapid and precise positioning[J]. Precision Engineering, 1997, 20(3): 161-170.
  • 2Huang S J, Wang S S. Mechatronics and control of a longrange nanometer positioning servomechanism [ J ]. Mechatronics, 2009, 19(1) : 14-28.
  • 3Michele P, Tim K. Piezoelectric actuators in micro-positioning[J]. Eng Sci Educ J, 2001,10(1) : 31-36.
  • 4Canudas de Wit C, Olsson H, Astrom, K J, et al. A new model for control of systems with friction [ J ]. IEEE Trans Autom Control, 1995, 40(3) : 419-425.
  • 5Chen H, Pan Y C. Dynamic behavior and modelling of the pre-sliding static friction[J]. Wear, 2000,242 ( 1/2 ) : 1- 17.
  • 6Huang S J, Yen J Y, Lu S S. Dual model control of a system with friction [ J ]. IEEE Trans Control Syst Technol, 1999,7(3) : 306-314.
  • 7Chen C L, Jang M J, Lin K C. Modeling and high-precision control of a ball-screw-driven stage[J]. Precision Engineering, 2004,28(4) : 483-495.
  • 8Chen J S, Chert K C, Lai Z C, et al. Friction characterization and compensation of a linear-motor rolling-guide stage [J]. Int J Mach Tools Manuf, 2003,43(9): 905-915.
  • 9Perng M H, Wu S H. A fast control-law for nano-positioning[J].Int J Mach Tools Manuf,2006,46(14 ) : 1753-1763.
  • 10Lin J, Chen C H. Positioning and tracking of a linear motion stage with friction compensation by fuzzy logic approach[J]. ISA Transaction, 2007, 46 (3) : 327-342.

同被引文献57

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部