期刊文献+

脉搏波的频域特征提取与自动识别技术 被引量:18

Spectrum Feature Extraction and Automatic Recognition of Pulse Waves
下载PDF
导出
摘要 脉搏波的频谱蕴含丰富的病理信息,但其复杂的频谱计算和分类是临床应用的瓶颈之一.本文引入模式识别技术,建立了心血管疾病的自动识别专家系统,为脉搏波频谱分析在临床中的应用开辟了新的研究思路.首先采用小波变换在多分辨率层次上提取脉搏波的频域特征,不仅获得了各个频带的谱能分量,而且得到了频谱分布参数小波熵;然后采用贝叶斯判别分析法建立自动识别模型,对频域特征进行分类.临床采集了30例冠心病人和30例正常人的脉搏波信号,对识别模型进行了训练,最后对模型进行了交互验证.结果表明,该识别模型对冠心病人的识别准确率为83.3%,对正常人的识别准确率为70.0%.该方法具有较好的识别效果,为脉搏波自动识别技术的发展提供了借鉴. The spectrum of pulse waves contains abundant pathological information, yet its complicated frequency-domain calculation and taxonomy are one of the bottlenecks in clinic application. In this paper, pattern recognition technique was introduced and an automatic recognition system of cardiovascular diseases was established, which provides a new research approach for pulse wave frequency-domain analysis in clinic application. First, wavelet transform was used to extract spectrum features of pulse waves, including the spectrum energy of each frequency component and the complexity parameter of spectrum distribution, i.e. the wavelet entropy. Then the automatic recognition model was built up based on Bayes discriminant analysis to classify spectrum features. The pulse waves of 30 normal subjects and 30 subjects with coronary disease were collected to train the recognition model, which was then evaluated by crossvalidation. The results show that the correct recognition rate of the model can reach 83.3% for patients with cardiovascular diseases and 70. 0% for the normal. So the proposed model that integrates spectrum analysis and pattern recognition is satisfactory in recognition of cardiovascular diseases and has supplied insight into the automatic recognition technique of pulse waves.
出处 《纳米技术与精密工程》 EI CAS CSCD 2010年第1期70-74,共5页 Nanotechnology and Precision Engineering
基金 天津市中小企业创新基金资助项目(052hcxgx12200)
关键词 脉搏波 频谱 小波变换 小波熵 贝叶斯判别分析 pulse wave spectrum wavelet transform wavelet entropy Bayes discriminant analysis
  • 相关文献

参考文献10

  • 1刘广斌,樊小力,黄洛秀,雷毅华.两种滑脉患者与健康妇女指端血管容积脉搏波的谱分析[J].西安医科大学学报,1990,11(3):201-205. 被引量:5
  • 2王炳和,罗建,相敬林,杨颙.人体脉搏功率谱分析与中医脉诊机理研究[J].西北大学学报(自然科学版),2001,31(1):21-25. 被引量:20
  • 3Wei L Y, Chow P. Frequency distribution of human pulse spectra[ J]. IEEE Trans Biomed Eng, 1985, BME-32 (3) : 245 -246.
  • 4寿小云.中医脉象振动觉[J].北京中医药大学学报,1998,21(1):23-26. 被引量:11
  • 5Rosso O A, Blanco S, Yordanova J, et al. Wavelet entropy: A new tool for analysis of short duration brain electrical signals [J]. Journal of Neuroscience Methods, 2001, 105( 1 ) :65-75.
  • 6Sello S. Wavelet entropy and the multi-peaked structure of solar cycle maximum [ J ]. New Astronomy, 2003, 8 (2) : 105-117.
  • 7Yordanova J, Kolev V, Rosso O A. Wavelet entropy analysis of event-related potentials indicates modality-independent theta dominance [ J ]. Journal of Neuroscience Methods, 2002, 117(1) : 99-109.
  • 8LauEO Y, Tse H F, Chan R H W, et al. Prediction of aortic augmentation index using radial pulse transmissionwave analysis [ J]. J Hypertens, 2006, 24(4) : 723-730.
  • 9Li B N, Dong M C, Vai M I,et al. An intelligent mobile cardiovascular monitoring device based on pulse wave [ C ] // Proceedings of ICISIP. California, USA, 2005: 463-468.
  • 10Takenaka S, Kobayashi K, Suzuki H. Pulse wave velocity as an indicator of arteriosclerosis in hemodialysis patients [ J ]. Atherosclerosis , 2004,176:405-409.

二级参考文献8

共引文献33

同被引文献170

引证文献18

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部