期刊文献+

基于聚类遗传算法的梯级水利枢纽短期电力调度优化 被引量:7

Short Term Hydropower Dispatching Optimization of Cascaded Hydropower Junctions Based on Cluster Genetic Algorithm
下载PDF
导出
摘要 针对标准遗传算法容易"早熟"的缺陷,提出聚类遗传算法;改进了选择算子和交叉算子,并利用Shubert多峰测试函数验证了聚类遗传算法的优势.引入水轮机组运行效率梯度变化因素提出改进变异算子,弥补了变异搜索过随机的缺陷.最后,将改进方式应用于三峡-葛洲坝梯级水利枢纽短期电力调度优化研究中,提出和构建了相应的优化模型以及机组组合启停和运行效率同步实现策略.实例优化结果表明:聚类遗传算法和改进变异算子能有效弥补"早熟"的缺陷,并能显著提高优化搜索效率,适用于梯级电站电力调度优化问题.优化得出的梯级电力调度方案可以满足设定目标和约束,并提高了梯级的发电效率. In view of the premature weakness of standard genetic algorithm,a cluster genetic algorithm has been put forward to improve the selection and crossover operators,and its advantages has been testified by Shubert multimodal function. Based on the change gradient of unit's operation efficiency,improved mutation operator has been proposed to deal with excessive randomization. All the above improvements have been applied to short term hydropower dispatching optimization of Three Gorges and Gezhouba cascaded hydropower junctions and the optimization model and synchronization optimization strategies have been developed. Real case optimization results show that cluster genetic algorithm and improved mutation operator can reduce the premature possibility and enhance the optimization efficiency. Hydropower dispatching solutions based on such improvements can meet all the objectives and constraints,and also increase the power generation efficiency.
作者 马超 练继建
出处 《天津大学学报》 EI CAS CSCD 北大核心 2010年第1期1-8,共8页 Journal of Tianjin University(Science and Technology)
基金 "十一五"国家科技支撑计划资助项目(2008BAB29B09) 国家杰出青年科学基金资助项目(50725929)
关键词 聚类遗传算法 机组运行效率变化梯度 改进变异算子 短期电力优化 三峡-葛洲坝梯级水利枢纽 cluster genetic algorithm change gradient of unit's operation efficiency improved mutation operator short term hydropower dispatching optimization Three Gorges and Gezhouba cascaded hydropower junctions
  • 相关文献

参考文献5

二级参考文献30

  • 1周浩,康建伟,陈建华,包松.蒙特卡罗方法在电力市场短期金融风险评估中的应用[J].中国电机工程学报,2004,24(12):74-77. 被引量:92
  • 2蔡煜东.运用改进的遗传算法拟合离子选择电极工作曲线[J].分析化学,1995,23(6):640-643. 被引量:5
  • 3刘首文,冯尚友.遗传算法及其在水污染控制系统规划中的应用[J].武汉水利电力大学学报,1996,29(4):95-99. 被引量:18
  • 4马光文.遗传算法在水电站优化调度中的应用[J].水科学进展,1997,3.
  • 5Wen Fushuan, David A K. Optimal bidding strategies and modeling of imperfect information among competitive generators [ J]. IEEE Trans on Power System, 2001, 16 (1): 15-22.
  • 6Goldberg D E. Genetic Algorithms is Search, Optimization and Machine Learning[J]. Addison-Wesley, 1989.
  • 7Daene C. McKinney, and Min-Der Lin, Genetic algorithm solution of groundwater management models[J]. Water Resources Research. 1994,30(60):1897-1906.
  • 8Scott E. Cieniawski, J.Wayland Eheart, and S.Ranjithan. Using genetic algorithms to solve a multiobjective groundwater monitoring problem[J]. Water Resources Research, 1995,31(2):399-409.
  • 9Graeme C.Dandy, Angus R.SImpson, and Laurence J.Murphy. An improved genetic algorithm for pipe network optimization[J]. Water Resources Research, 1996,32(2): 449-458.
  • 10Robin Wardlaw, and Mohd Sharif. Evaluation of genetic algorthms for optimal reservoir system operation[J]. Journal of Water resources Planning and Management, 1999, 125(1):25-33.

共引文献137

同被引文献51

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部