摘要
本文在Finsler曲面上定义了一个新的不变量H.该不变量等于零刻画了Riemann流形.文章给出了H的一个上界并且构造了H为常值的非Riemann的Finsler曲面.此外,本文还推广了Landsberg曲面的Gauss-Bonnet-Chern定理并分类了非正曲率的Finsler曲面.
A new invariant H on a Finsler surface, which give a measure of the failure of Finsler surface to be Riemann, is defined. A upper bound of H is obtained. Non-Riemann Finsler surfaces with constant H are constructed. Gauss-Bonnet-Chern theorem for Landsberg surfaces is generalized. A classification of non-positive curved Finsler surfaces is given.
出处
《数学进展》
CSCD
北大核心
1998年第4期343-350,共8页
Advances in Mathematics(China)
关键词
Finsler曲面
射影切丛
几何
拓扑
黎曼流形
Finlsler surface
projectived tangent bundle
Gauss-Bonnet-Chern formula
Euler characteristic