摘要
In this paper, we prove the following theorem: Suppose that k , n be two positive integers, and a , b , w be three finite complex numbers with a n≠b n , w n=1 . If a meromorphic function f(z) and its k-th derivative f (k) (z) share two finite set S 1={aw i | i=1,2,…, n} , S 2={bw i | i=1,2,…,n} , then f(z)=tf (k) (z) , where t n=1.
本文证明了如下结果:设k,n是两个正整数,a,b,w是三个有穷复数,满足an≠bn,wn=1.如果一开平面上的亚纯函数f(z)以及它的k阶导数f(k)(z)分担两个集合S1={awi|i=1,2,…,n},S2={bwi|i=1,2,…,n},则f(z)≡tf(k)(z),其中tn=1.