期刊文献+

基于掩模及边缘灰度补偿算法的脐橙背景及表面缺陷分割 被引量:26

Background and external defects segmentation of navel orange based on mask and edge gray value compensation algorithm
下载PDF
导出
摘要 缺陷检测一直是利用计算机视觉技术进行水果自动分级的难点。为了解决带有缺陷的水果在图像分割时部分缺陷容易被误分割为背景这一问题,以脐橙为研究对象,首先提取B分量,利用B分量构建掩模图像,然后对R分量图像进行掩模,从而在不损伤缺陷的情况下实现了水果与背景100%分割。考虑到水果呈球状,检测时边缘灰度较低,在缺陷分割时容易出现误分割,提出快速水果图像边缘灰度补偿算法,利用此算法,对6种常见脐橙缺陷,共计220幅图像,设定分割阈值为165,使不同灰度等级的缺陷一次性分割成功,分割率最高为100%,最低为79.5%。试验结果表明由于单阈值的使用,提高了缺陷分割效率。 Detection of fruits surface defects is always a challenging project for automated fruit grading of computer vision.A new method was developed to solve the problem of a part of defects easily being mistaken for the background when the fruits with defects were segmented from the background.First the B-component image of navel orange was extracted and built mask,then R-component image was masked by B-component image,thus 100%fruits and background segmentation with intact defects was achieved.Considering false segmentation of defects owing to the lower edge gray values of spherical fruits,an algorithm of fast fruit image edge gray value compensation was advanced.Using this algorithm,six kinds of common defects of navel orange,for a total of 220 images,setting the threshold for 165,the defects of different gray value was successfully segmented at one time.The highest segmentation rate was 100%and the lowest was 79.5%.Test results showed that the segmentation efficiency of the defects was improved as a result of the use of a single threshold.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2009年第12期133-137,共5页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家自然科学基金(30825027) 国家科技支撑计划课题(2006BAD11A12)
关键词 计算机视觉 缺陷 提取 脐橙 背景分割 computer vision defects extraction navel orange background segmentation
  • 相关文献

参考文献20

二级参考文献45

  • 1刘木华,赵杰文,郑建鸿,吴瑞梅.农畜产品品质无损检测中高光谱图像技术的应用进展[J].农业机械学报,2005,36(9):139-143. 被引量:49
  • 2陈全胜,赵杰文,张海东,方明.利用计算机视觉识别茶叶的色泽类型[J].江苏大学学报(自然科学版),2005,26(6):461-464. 被引量:45
  • 3蔡健荣,许月明.基于主动形状模型的苹果果形分级研究[J].农业工程学报,2006,22(6):123-126. 被引量:21
  • 4洪添胜,乔军,Ning Wang,Michael O. Ngadi,赵祚喜,李震.基于高光谱图像技术的雪花梨品质无损检测[J].农业工程学报,2007,23(2):151-155. 被引量:111
  • 5EIMasry G, Wang Ning, ElSayed Adel, et al. Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry[J]. Journal of Food Engineering, 2007, 81(1): 98-107.
  • 6Qiao Jun, Ngadi M O, Wang Ning, et al. Pork quality and marbling level assessment using a hyperspectral imaging system[J]. Journal of Food Engineering, 2007, 83(1): 10- 16.
  • 7Lu Renfu, Peng Yankun. Hyperspectral scattering for assessing peach fruit firmness[J]. Biosystems Engineering, 2006, 93(2): 161-171.
  • 8Sabreen Gad, Timothy Kusky. ASTER spectral ratioing for lithological mapping in the Arabian-Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt[J]. Gondwana Research, 2007, 11(3)): 326-335.
  • 9Frank J A van Ruitenbeek, Pravesh Debba, Freek D van der Meer, et al. Mapping white micas and their absorption wavelengths using hyperspectral band ratios[J]. Remote Sensing of Environment, 2006, 102(3-4): 211-222.
  • 10Amato U, Antoniadis A, Cuomo V, et al. Statistical cloud detection from SEVIRI multispectral images[J]. Remote Sensing of Environment, 2008, 112: 750-766.

共引文献228

同被引文献241

引证文献26

二级引证文献269

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部