期刊文献+

多元混合正态分布情形下的外汇期权组合非线性VaR模型 被引量:2

Nonlinear VaR model of FX options portfolio under multivariate mixture of normal distributions
原文传递
导出
摘要 提出了一种多元厚尾分布情形下的外汇期权组合非线性VaR模型.用多元混合正态分布来描述汇率回报分布厚尾特征,推导出多元混合正态分布情形下的反映外汇期权组合价值变化的矩母函数;在此基础上,利用特征函数和矩母函数关系,进一步将概率分布的Fourier-Inversion方法和数值积分近似计算的迭代算法——自适应Simpson法则发展到多元混合正态分布情形下的外汇期权组合非线性VaR模型中,估计出期权组合的VaR值.数值结果表明:使用Fourier-Inversion方法得到的VaR值与使用MonteCarlo模拟方法得到的VaR值相差不大,但使用Fourier-Inversion方法的计算速度明显快于Monte Carlo模拟方法. The paper proposes a kind of nonlinear VaR model of FX options portfolio under heavy-tailed exchange rate returns.The paper depicts heavy-tailed exchange rate returns using multivariate mixture of normal distribution,and derives the moment generating function that reflects the change in FX option portfolio value.Moreover,to make use of the relationship between characteristic function and moment generating function,the paper develops Fourier-Inversion method and adaptive Simpson rule with iterative algorithm of numerical integration into non-linear VaR model of FX option portfolio,and calculates the VaR values of portfolio.Numerical results show that the VaR values using Fourier-Inversion method is slight difference in the VaR values using Monte Carlo simulation method.However,the calculation speed using Fourier-Inversion method is obviously quicker than the speed using Monte Carlo simulation method.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2009年第12期65-72,共8页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70771099) 中国博士后科学基金(20070421167)
关键词 外汇期权 非线性VaR 多元混合正态分布 Fourier-Inversion方法 FX option nonlinear VaR multivariate mixture of normal distributions Fourier-Inversion method
  • 相关文献

参考文献13

  • 1Heyde C C. A risky asset model with strong dependence through fractal activity time[J]. Journal of Applied Probability, 1999(36): 1234-1239.
  • 2Hosking J R M, Bonti G, Siegel D. Beyond the log-normal[J]. Risk, 2000, 13(5): 59-62.
  • 3Heyde C C, Kou S. On the controversy over tailweight of distributions[J]. Operations Research Letters, 2004(32): 399-408.
  • 4卢方元.中国股市收益率胖尾性分析[J].系统工程理论方法应用,2005,14(4):350-352. 被引量:10
  • 5徐绪松,侯成琪.非正态稳定分布条件下的投资组合模型:均值-尺度参数模型[J].系统工程理论与实践,2006,26(9):1-9. 被引量:17
  • 6Glasserman P. Monte Carlo Methods in Financial Engineering[M]. New York: Springer-Verlag Berlin, 2004.
  • 7Zhou G F. Financial Econometrics: Empirical Analysis of Asset Pricing[M]. Beijing: Peking University Press,2002.
  • 8Campbell R T, Zhou G. International asset pricing with alternative distributional specifications[J]. Journal of EmpricM Finance, 1993, 1(5): 107 131.
  • 9陈荣达.基于Delta-Gamma-Theta模型的外汇期权风险度量[J].系统工程理论与实践,2005,25(7):55-60. 被引量:15
  • 10Hardle W, Kleinow T, Stahl G. Applied Quantitative Finance[M]. New York: Springer-Verlag Berlin, 2002.

二级参考文献40

  • 1Stein, C. Estimation of the mean of a multivariate normal distribution[J]. The Annals of Statistics,1981,9(06):1135-1151.
  • 2Hill G W, Davis A W. Generalized asymptotic expansions of cornish-fisher type[J]. Ann Math Statist, 1968, 39:1264-1273.
  • 3J.P. Morgan. RiskMetrics Technical Document[M]. 4th edition. New York: Morgan Guaranty Trust Company, 1996. 1-58.
  • 4Britten-Jones M and.Schaefer S M. Non-linear value-at-risk[J]. European Finance Review, 1999(02):161-187.
  • 5Mina, J. and Ulmer, A. Delta-Gamma four ways[EB/OL]. Working Paper, J.P. Morgan/Reuters, 1999, www.risk-metrics.com/research/working/
  • 6Hill B. A simple general approach to inference about the tail of a distribution [J]. Annals of Mathematical Statistics, 1975, (3): 1163-1174.
  • 7Pictet O, Dacarogna M, Muller U. Hill, bootstrap and jackknife estimators for heavy tails [R]. working paper, Olsen & Associates, Zurich, 1996.
  • 8Beirlant, J Vynckier P Teugels J. Tail-index estimation, pareto quantile plots and regression diagnostics[J]. Joumal of the American Statistical Association,1996, 91: 1659-1667.
  • 9Huisman R, Koedijk K G, Kool C J M, et al. Tailindex estimates in small samples [J]. Joumal of Business and Economic Statistics, 2001, 19: 208-216.
  • 10Koedijk K G, Kool C J M. Tail estimates and the EMS target zone [J]. Review of International Economics, 1994, (2): 153-165.

共引文献33

同被引文献40

  • 1胡支军,黄登仕.一个非对称风险度量模型及组合证券投资分析[J].中国管理科学,2005,13(2):8-14. 被引量:4
  • 2朱海霞,潘志斌.基于g-h分布的投资组合VaR方法研究[J].中国管理科学,2005,13(4):7-12. 被引量:10
  • 3Mandelbrot B. The Variation of Certain Speculative Prices [ J]. Journal of Business, 1963,36:394 - 419.
  • 4Blattberg, R. , Gonedes. N. A Comparison of the Stable and Studen Distributions as Statistical Models for Stock Prices [J]. Journal of Business, 1974,47 ( 1 ) : 244 - 280.
  • 5Badrinath, S. G. , Chatterjee S. , On Measuring Skewness and Elongation in Common Stock Return Distributions: The Case of the Market Index[J]. Journal of Business, 1988, 61(4) :451 -472.
  • 6Markowitz H M. Portfolio selection [J]. Journal of Fi- nance, 1952, 7: 77-91.
  • 7Acerbi C, Tasche D. On the coherence of expected shortfall[J]. Journal of Banking & Finance, 2002,26 (7): 1487-1503.
  • 8Tasche D. Expected shortfall and beyond [J]. Journal of Banking & Finance, 2002, 26(7): 1519-1533.
  • 9Yamai Y, Yoshiba T. Value-at-risk versus expected shortfall., a practical perspective[J]. Journal of Banking & Finance, 2005, 29(4): 997-1015.
  • 10Szego G. Measures of risk [J]. Journal of Banking & Fi- nance, 2002, 26(7):1253-1272.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部