摘要
正则半群S的同余格(S)上的算子K,k,T和t定义如下:对于ρ∈S,ρK和ρk(ρT和ρt)分别是与ρ有相同核(迹)的最大和最小同余.我们确定了所有正则纯整群带的同余格上由K,k,T和t生成的算子半群.并确定了正则纯整群带上任意同余的同余网.
Four operators K,k,T and t are defined on the congruence lattice S of a regular semigroup S as follows: forρ∈S, ρK and ρk(ρT and ρt)are the greatest and the smallest congruences with the same kernel(trace)as ρ, respectively. We determine the semigroup generated by operators K,k,T and t as they act on congruence lattices of all regular orthocryptogroups. We also determine the network of congruences associated with a congruence ρ∈S.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1998年第5期1101-1108,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金
甘肃省中青年基金
兰州大学校内基金
关键词
正则纯整群带
算子半群
同余格
同余网
半群
Regular orthocryptogroup, Operator semigroup, Congruence lattice, Congruence networks