期刊文献+

正则纯整群带的算子半群和同余网 被引量:1

Operator Semigroups and Networks of Congruences for Regular Orthocryptogroups
原文传递
导出
摘要 正则半群S的同余格(S)上的算子K,k,T和t定义如下:对于ρ∈S,ρK和ρk(ρT和ρt)分别是与ρ有相同核(迹)的最大和最小同余.我们确定了所有正则纯整群带的同余格上由K,k,T和t生成的算子半群.并确定了正则纯整群带上任意同余的同余网. Four operators K,k,T and t are defined on the congruence lattice S of a regular semigroup S as follows: forρ∈S, ρK and ρk(ρT and ρt)are the greatest and the smallest congruences with the same kernel(trace)as ρ, respectively. We determine the semigroup generated by operators K,k,T and t as they act on congruence lattices of all regular orthocryptogroups. We also determine the network of congruences associated with a congruence ρ∈S.
作者 罗彦锋
机构地区 兰州大学数学系
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 1998年第5期1101-1108,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金 甘肃省中青年基金 兰州大学校内基金
关键词 正则纯整群带 算子半群 同余格 同余网 半群 Regular orthocryptogroup, Operator semigroup, Congruence lattice, Congruence networks
  • 相关文献

参考文献1

  • 1罗彦锋,博士学位论文,1996年

同被引文献9

  • 1PETRICH M. Congruences on inverse semigroups[J]. J Algebra, 1978,55:231 -256.
  • 2PASTIJN F J, PETRICH M. Congruences on regular semigroups [ J ]. Trans Amer Math Soc, 1986,259: 607 - 633.
  • 3PETRICH M. The semigroup generated by certain operators on the congruence lattice of a clifford semigroup [ J ]. Semigroup Forum, 1992,45 : 332 - 341.
  • 4PETRICH M. Congruence networks for completely simple semigroups[J]. J Austral Math Soc(Series A), 1994,56 : 243 - 266.
  • 5WANG Li - Min. TK - operator semigroups for cryptogrups [ J ]. Semigroup Forum, 2000,60 : 368 - 384.
  • 6WANG Li - Min. Trace - kernel - operator semigroups for bisimple ω - semigroup [ J ]. Semigroup Forum, 2000, 60 : 424 - 435.
  • 7LUO Yan- Feng, WANG Li - Min. Semigroups of operators associated with the kernel and trace of congruences on E- unitary completely regular semigroups[J]. Comm Algbra,2001,29:99 -108.
  • 8PETRICH M. Inverse Semigroups[M]. New York: Wiley, 1984.
  • 9ALIMPIC B R, KRGOVIC D N. Some congruences on regular semigroups[M]//Lecture Notes in Math: 1320, Berlin, New York : Springer - Verlag, 1988 : 1 - 10.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部