期刊文献+

混合误差协方差用于集合平方根滤波同化的试验 被引量:8

The Suitability Test of Ensemble Square Root Filter with Hybrid Background Error Covariance
下载PDF
导出
摘要 在集合卡尔曼滤波方法中,根据预报集合统计提供的依流型而变的预报误差协方差对同化起到决定性的作用。但在集合样本容量不足及模式存在系统误差时,由预报集合估计的预报误差协方差会出现明显偏差。既要减小这种估计偏差对同化产生的影响而又不增加计算量,一种可供选择的方法是将定常或准定常的高斯型预报误差协方差和由预报集合估计的预报误差协方差加权平均用于集合卡尔曼滤波同化。利用浅水方程模式,通过观测系统模拟试验检验在不同的模式误差、集合成员数以及观测密度条件下,将这种混合预报误差协方差矩阵用于在集合平方根滤波的效果。试验结果表明,当预报集合成员数较多而模式又无误差时,不必采用混合的预报误差协方差矩阵,否则,采用混合的预报误差协方差矩阵都有可能改进分析和预报。混合预报误差协方差的最优的权重系数与模式误差关系密切,模式误差越大,定常预报误差协方差的权重越大。最优的权重系数与集合成员数及观测密度也有一定关系。 The flow-dependent background error covariances produced with ensemble forecast statistics play an important role in the Ensemble Kalman Filter (EnKF) assimilation. But the accuracy of the forecast error covariance is reduced by both limited forecast ensemble size and forecast model system error significantly. A possible method to reduce the negative effect from the bias of the forecast error covariance - without additional computing cost is discussed. A hybrid forecast error covariance by weighting mean of the sample covariance matrix of the forecast ensemble and the static or quasi static covariance matrix is employed in Ensemble Square Root Filter (EnRSF) data assimilation. The hybrid scheme is tested by a set of Observing System Simulation Experiments (OSSE) with different model errors, ensemble sizes, and observation densities, using the shallow water model. The preliminary results show that the hybrid scheme is no need for big ensemble size and perfect model situation. Otherwise, the hybrid scheme could reduce forecast and analysis error. The optimal weighting coefficient in the hybrid scheme is depend on the model error distinctly and the weight of static error covariance will grow with model error. Ensemble slze and observation density also influence the optimal weighting coefficient.
出处 《高原气象》 CSCD 北大核心 2009年第6期1399-1407,共9页 Plateau Meteorology
基金 国家自然科学基金项目(40875063 40805044)资助
关键词 资料同化 集合平方根滤波 混合方案 预报误差协方差 观测系统模拟试验 Data assimilation Ensemble square root filter Hybrid scheme Forecast error covariance Observing system simulation experiment
  • 相关文献

参考文献17

  • 1Kalman R E. A new approach to linear filtering and prediction problems[J]. Transactions of the ASME Journal of Basic Engineering, 1960, 82(Series D): 35--45.
  • 2Kalrnan R E, Bucy R S. New results in linear filtering and prediction theory[J]. Transactions of the ASME Journal of Basic Engineering, 1961, 83(Series D): 95--108.
  • 3卢峰本.卡尔曼滤波在沿海冬半年风力预报中的应用[J].气象,1998,24(3):50-53. 被引量:27
  • 4刘成思,薛纪善.关于集合Kalman滤波的理论和方法的发展[J].热带气象学报,2005,21(6):628-633. 被引量:34
  • 5Epstein E S. Stochastic dynamic prediction[J]. Tellus, 1969, 21:739- 759.
  • 6E-ensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J].J Geophys Res, 1994, 99(C5): 10143-- 10162.
  • 7Houtekamer P L, H L Mitchell. Data assimilation using an ensemble Kalman filter technique[J]. Mon Wea Rev, 1998, 126: 796- 811.
  • 8Hamill T M, C Snyder. A hybrid ensemble Kalman filter 3D-- -ariational analysis scheme[J]. Mon Wea Rev, 2000, 128: 2905 -2919.
  • 9Wang X, C Snyder, T M Hamill. On the theoretical equi-alence of differently proposed ensemble-3DVAR hybrid analysis schemes[J]. MonWeaRev, 2007, 1351 222--227.
  • 10Etherton B J, C H Bishop. Resilience of hybrid ensemble/ 3DVAR analysis schemes to model error and ensemble co-arianceerror[J]. MonWeaRev, 2004, 132:1065--1080.

二级参考文献27

  • 1黄香杏,曾心,吴燊先,陆家德,赵慧.北部湾北部海面强风成因分析及其预报[J].广西气象,1993,14(3):39-43. 被引量:5
  • 2陆如华,何于班.卡尔曼滤波方法在天气预报中的应用[J].气象,1994,20(9):41-43. 被引量:52
  • 3余剑莉,统计气象预报,1994年,246页
  • 4徐萃薇,计算方法引论,1985年,136页
  • 5Panel on model-assimilated Data sets (D.R.Johnson,J.T.Bates,G.P.Brasseur,M.Ghil,A.Hollingsworth,R.L.Jenne,K.Miyakoda,E.Rasmusson,E.S.Sarachik,and T.T.Warner).1991:Four-Dimensional Model Assimilation of Data:A Strategy for the Earth System Sciences,National Academy Press,Washington,D.C.,78 pp.
  • 6PANOFSKY H.Objective weather-map analysis[J].J Appl Meteor,1949,6:386-392.
  • 7CRESSMAN.An operational objective analysis system[J].Mon Wea Rev,1959,87(10):367-374.
  • 8GANDIN L.Objective analysis of meteorological fields (Leningrad:Gridromet).English translation(Jerusalem:Israel Problem for Scientific Translation),1965.
  • 9JONES,ROBERT W.On Improving Initial Data for Numerical Forecasts of Hurricane Trajectories by the Steering Method[J].Journal of Applied Meteorology,1964,3(3):277-284.
  • 10NAGLE,ROLAND E,CLARK,et al.Formulation and testing of a program for the objective assembly of meteorological satellite cloud observations[J].Monthly Weather Review,1967,95(4):171-187.

共引文献57

同被引文献111

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部