期刊文献+

关于β型螺形函数的一类子族精细的增长、掩盖定理和系数估计 被引量:4

The Refined Growth,Covering Theorems and Coefficient Estimation a Subclass of Spiral-Like Functions of Type β
下载PDF
导出
摘要 利用从属原理,对函数族Sαβ∧中函数f(z)精细的增长、掩盖定理及第n项系数的精细估计进行了研究,所得结果推广和改进了一些已知结论. In this paper,by subordination principle,it is proved that the refined growth,covering theorems and the sharp bound for the n-th tern coefficient estimate of functions inf∈Sα^β^∧.These results generalize some known results.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2009年第6期670-672,677,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 江西省自然科学基金(2007GZS0177) 江西省教育厅科技项目(GJJ09149) 江西师范大学博士专项基金资助项目
关键词 α次星形函数 Β型螺形函数 从属关系 增长、掩盖定理 系数估计 starlike functions of orderα spiral-like functions of type β subordination relation growth covering theorems coefficient estimate
  • 相关文献

参考文献8

  • 1Graham I, Kohr G. Geometric function theory in one and higher dimensions [ M ]. New York:Marcel DeKKer,2003.
  • 2徐庆华,王朝华.关于β型螺形函数的一类子族[J].江西师范大学学报(自然科学版),2008,32(5):606-609. 被引量:6
  • 3Robertson M S. On the theory of univalent functions [ J ]. Ann Math, 1936,37 : 374-408.
  • 4Duren P L. Univalent functions [ M ]. New York: Spring-Vedag, 1983.
  • 5Ahlfors L V. Complex analysis [ M ]. New York: McGram-Hill, 1953.
  • 6Ahlfors L V. Complex analysis [ M ]. New York : McGraw-Hill Book Co, 1979 : 87-135.
  • 7Bieberbach L. Uber einige extremalproblem im gebiete der konformen abbildung[ J]. Math Ann, 1916,77:153-172.
  • 8Shigeyoshi O W, Yasar Polatoglu, Emel Yavuz. Coefficient inequalities for class of uniformly starlike and convex functions [ J ]. Journal of Inequlities in Pure and Applied Mathematics,2006,7 ( 5 ) : 1-5.

二级参考文献7

  • 1Robertson M S. On the theory of univalent functions[J]. Ann Math, 1936,37:374-408.
  • 2Spacek L. Contribution a la theorie des functions univalentes[J]. Casopis Pest, Mat, 1932,62:12-19.
  • 3Graham I, Kohr G. Geometric fuction theory in one and higher dimensions[ M]. New York: Marcel Dekker,2003.
  • 4Goodman A W. Univalent functions[M]. Tampa Florida: Ⅰ-Ⅱ, Mariner Publ Co, 1983.
  • 5Ahlfors L V. Complex analysis[M]. New York: McGram-Hill, 1953.
  • 6Bieberbach L. Uber die koeffizienten derjenigen potenzreihen, welcheeine schlichte abbildung des einheitskreiss vermitteln[ M ]. Akad Wiss: S-B, Preuss, 1961 : 153-172.
  • 7Ahlfors L V. Complex analysis[ M ]. New York : McGraw-Hill Book Co, 1979.

共引文献5

同被引文献27

  • 1黄全连,刘小松.强β型螺形函数子族的系数估计[J].湛江师范学院学报,2012,33(3):32-37. 被引量:1
  • 2冯淑霞,刘太顺,任广斌.复Banach空间单位球上几类映射的增长掩盖定理[J].数学年刊(A辑),2007,28(2):215-230. 被引量:25
  • 3冯淑霞,刘太顺.α次的殆星映射的充分判别条件[J].数学物理学报(A辑),2007,27(3):506-514. 被引量:3
  • 4Bieberbach L.ber die Koeffizienten derjenigen Potenzreihen.welche eine schlichte Abbildung des Einheitskreiss vermitteln[J].S-B Preuss Akad Wiss,1916:940-955.
  • 5Garabedian P R,Schiffer M.A proof of the Bieberbach conjecture for the fourth coefficient[J].J Rational Meth Anal,1955,4:428-465.
  • 6Fitzgerald C H.Quadratic inequalities and coefficient estimates for schlicht functions[J].Arch Rational Meth Anal,1972,46:356-368.
  • 7Milin I M.Adjacent coefficients of univalent functions[J].Soviet Math Doklady,1968,9:762-765.
  • 8Lowner K.Untersuchungen über schlichte knoforme Abbildungen des Einheit-skreises[J].I Math Ann,1923,89:103-121.
  • 9Miller S S,Mocanu P T.Differential Subordinations[M].New York:Marcel Dekker INc,Theory and Applications,2000.
  • 10Graham I,Korh G.Geometric function theory in one and higher dimensions[M].New York:Marcel Dekker,2003:34-78.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部