期刊文献+

室温工作的单电子晶体管研究 被引量:1

Research of Single Electron Transistors Operated in Room-temperature
下载PDF
导出
摘要 由于具有低功耗、高速度、高集成度等优点,单电子晶体管成为最有前景的纳米电子功能器件之一。但是,由于结构上的特殊性,单电子晶体管只能在低温下正常工作,该特性限制了其实用化进程。因此,研究可在室温下工作的单电子晶体管具有重要意义。在分析单电子晶体管工作机理的基础上,计算了单电子晶体管室温工作的基本条件,并实验制备出了样片。测试结果表明,所制备的单电子晶体管可在室温下表现出库仑振荡等基本特性。该研究成果将为单电子晶体管的集成实用化打下良好的基础。 The single electron transistor (SET) has become one of the most promising components in nanometer electronic functional devices because of its advantages of low power consumption, high speed and high integration. But due to the special features in structure, SET usually operates only in very low temperature, which prevents SET from being feasible devices. Therefore, it is very important to investigate SET which operates in room-temperature. In this paper, based on the analysis of working mechanism of SET, we calc^ate the conditions in which SET can operate in room-temperature, then prepare SET samples in laboratory. The measurement results show that the prepared SET can operate normally in room-temperatmre. The research findings will deliver a fine foundation for the practical application of SET.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2009年第6期25-28,共4页 Journal of National University of Defense Technology
基金 国家863计划资助项目(2009AA01Z114) 教育部"高性能微处理器技术"创新团队资助项目(IRT0614)
关键词 单电子晶体管 室温单电子晶体管 纳米器件 single electron transistor(SET) room-temperature SET nanometer device
  • 相关文献

参考文献11

  • 1Gorter C J. A Possible Explanation of the Increase of the Electrical Resistance of Thin Metal Films at Low Temperature and Small Field Strengths[J].Physica, 1951,17:777 - 80.
  • 2Averin D C, Likharev K K. Coulomb Blockade of Single-electron Tunneling, and Coherent Oscillations in Small Tunnel Junctions[J]. J. Low Temp. Plays, 1986, 62: 345-373.
  • 3Fulton T A, Dolan G J. Observation of Single-electra Charging Effects in Small Tunnel Junctions[J].Phys. Rev. Lett., 1997, 59:109 - 112.
  • 4Scott-thomas J H F, Field S B, Kastner M A, et al. Conductance Oscillations Periodic in the Density of a One-dimensional Electron Gas[ J]. Phys. Rev. Lett., 1959, 62: 583-586.
  • 5Saitoh M, Hiramoto T. Observation of Current Staircase Due to Large Quantum Level Spacing in a Silicon Single-dectron Transistor with Low Parasitic Series Resistance[J]. J. Appl. Phys., 2002, 91(10): 6725-6728.
  • 6Ono Y, Takahashi Y, Yamazaki K, et al. Fabrication Method for IC-oriented Si Single-dectron Transistors[J]. IEEE Transactions on Electron Devices, 2000, 47(1): 147- 153.
  • 7Olen W, Ahmed H, Nakazoto K. Coulomb Blockade at 77K in Nanoscale Metallic Islands in a Lateral Nanostructure[J]. Appl. Phys. Lett., 1995, 66: 3383- 3884.
  • 8Klein D L, McEuen P L. An Approach to Electrical Studies of Single Nanoctystals[J]. Appl. Phys. Lett., 1996, 68(18): 2574-2576.
  • 9Matsumoto K, et al. Room Temperature Operation of a Single Electron Transistor Made by the Scanning Tunneling Microscope Nano Oxidation Process for the TiOx/Ti System[J]. Appl. Phys. Lett., 1996, 68: 34-36.
  • 10Postma H W C, Teepen T, Yao Z, et al. Carbon Nanotube Single-dectron Transistors at Room Temperature[J]. Science, 2001, 293(5527): 76-79.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部