期刊文献+

图的最大度与(p,1)-全标号

The Maximum Degree and (p,1)-Total Labeling of Graphs
下载PDF
导出
摘要 图G的一个(p,1)全标号是与频道分配有关的一种染色,它是从V(G)∪E(G)到一个整数集合的映射,且满足:1)图G的任意两个相邻的顶点得到不同的整数;2)图G的任意两个相邻的边得到不同的整数;3)图G的任意一个顶点和它所关联的边得到的整数必须至少相差p.一个(p,1)-全标号的跨度是指最大标号数与最小标号数的差.图G的所有(p,1)-全标号函数T中最小的跨度,称为图G的(p,1)-全标号数,记为λp(G).本文我们证明了对任意的图G,其最T大度△是偶的且至少是10,则λ2≤2△-1.另外对于任意的简单连通图G,其最大度为△,如T果G的最大度点的邻点中至多有△-1个最大度点,则λp(G)≤p+4. A (p,1)-total labeling of graph G is an assignment of integers to V(G)∪E(G) such as: 1) any two adjacent vertices of G receive distinct integers; 2) any two adjacent edges of G receive distinct integers; 3) a vertex and its incident edges receive integers that differ by at least p in absolute value. The span of a (p,1)-total labeling of G is T T called the (p,1)-total number and denoted by λp (G). In this paper we prove that λ2 ≤ 2△ 1 for any graph G T with the maximum degree △ ≥ 10 and △ is even. In addition, T we prove that λp^T (G) ≤ p + 4 for any simple connected graph G provided that the number of vertices with maximum degree which is adjacent to any vertex with maximum degree of G at most △- 1.
出处 《海南师范大学学报(自然科学版)》 CAS 2009年第4期384-387,共4页 Journal of Hainan Normal University(Natural Science)
基金 国家自然科学基金项目(60673047)
关键词 (P 1)-全标号 全标号数 最大度 (p 1)-Total labeling 1)-Total number Maximum degree
  • 相关文献

参考文献7

  • 1Griggs J p., Yeh P. K. labeling graphs with a condition at distance two[J ]. Discrete Mathematics,1992,5:586-595.
  • 2Fredeic Havet, Min Li Yu. (p, 1 )-Total labeling of graphs [J ]. Discrete Mathematics,2007,308:496-513.
  • 3Chang G J, Kuo D. The L(2,1 )-labeling on graphs, SIAMJ. Discrete Math,1996,9:309-316.
  • 4Chang G J, Ke W T , Kuo D, et al. On L(d,l )-labeling ofgraphs[J ]. Discrete Mathematics,2000,220:57-66.
  • 5Whittlesey M A, Geroges J P, Mauro D W. On the Rnumber of and related graphs[ J ]. Dis-crete Mathematics,1995,8:449-506.
  • 6Fabrice Bazzaro. Mickael Montassier, Andre Raspaud. (d, 1 )-total labeling of planar graphs with large girth and high maximum degree[J]. Discrete Mathematics,2007,307: 2141-2151.
  • 7Bollobas B. Modem Graph Theory[M]. New York:Springer-Verlag,1998.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部