期刊文献+

K-最近邻分类技术的新发展与技术改进 被引量:5

Development and improvement of K-Nearest Neighbor clustering technique
下载PDF
导出
摘要 K-最近邻算法是数据挖掘分类方法中最常用的算法之一,在很多实际问题上都有应用。本文对近年来基于K-最近邻算法的各种改进技术进行了分析,从速度提高和准确度提高两个方面给予了归纳。 K-Nearest Neighbor algorithm is one of the clustering algorithms in data dining which is often be used to resolve all kinds of problems.In this paper,many improved K-NN algorithms are collected to analysis from two aspects,as efficiency and accuracy.
作者 王娜 侯爽
出处 《河北省科学院学报》 CAS 2009年第4期11-13,共3页 Journal of The Hebei Academy of Sciences
关键词 K-最近邻 分类 算法 K-Nearest Neighbor Clustering Algorithm
  • 相关文献

参考文献6

二级参考文献32

  • 1张琦,吴斌,王柏.非平衡数据训练方法概述[J].计算机科学,2005,32(10):181-186. 被引量:10
  • 2刘胥影,吴建鑫,周志华.一种基于级联模型的类别不平衡数据分类方法[J].南京大学学报(自然科学版),2006,42(2):148-155. 被引量:23
  • 3Han Jia-wei,Kamber M.Data mining concepts and techniques[M]. 2nd ed.University of Illinois,Urbana Champaign:Morgan Kaufmann Publishers, 2006:12-14.
  • 4Wang Hui.Nearest neighbors by neighborhood counting[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28 (6) :942-953.
  • 5Gatzer G,Davey B A,Freese R,et al.General lattice theory[M].2nd ed.Department of Mathematics University of Manitoba Winnipeg, Canada:Birkhauser Basel, 1983.
  • 6Blake C,Keogh E,Merz C J.UCI repository of machine learning databases[DB/OL].[ 1998].http ://www.ics.uci.edu/mlearn/MLReposit ory. html,Department of Information and Computer Science,University of California, Irvine.
  • 7Papadimitriou S,Kitagawa H,Gibbons P B,et al.LOCI:fast outlier detection using the local correlation integral.School of Computer Science Carnegie Mellon University Pittsburgh,PA 15213.Novem ber 2002 CMU-CS-02-188.
  • 8Shin C, Yun U, Kim H, etal. A Hybrid Approach of Neural Network and Memory-Based Learning to Data Minging [J]. IEEE Transaction on NeuralNetwork, 2000, 11 (3): 637-646.
  • 9Duda R O, Hart P E. Pattern classification and Scene Analysis [ M]. John Wiley & Sons, 1991.
  • 10Carpenter G A, Grossberg S, Rosen D B. Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system [J]. Neural Networks, 1991, 4: 759-771.

共引文献38

同被引文献42

引证文献5

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部