期刊文献+

基于免疫遗传算法的公交线网优化研究 被引量:5

Optimization of Transit Network Design Using Immune Genetic Algorithm
下载PDF
导出
摘要 为了提高遗传算法在线网优化中的稳定性,在遗传算法过程中加入免疫因子的提取与注射,并设置局部最优的检测。改进后的免疫遗传算法能结合求解问题的特征信息对种群进行免疫接种,提高搜索速度和精度。通过路网验证,并与标准遗传算法进行比较,表明效果明显。 Although Genetic Algorithm(GA) has been applied to Transit Network Design Problem(TNDP),slow evolutions and early convergences still remain unsolved.In order to improve the efficiency of GA,an improved algorithm based on the extraction and injection of vaccine is proposed in this paper.In addition,a detection mechanism is embedded in the algorithm to avoid local optimum.The Immune Genetic Algorithm(IGA) can improve the search speed and precision by vaccinating the population with the "special" characteristic information from the problem to be solved.The IGA is tested with a network,and the result is found to be much better when compared with standard GA.
出处 《交通信息与安全》 2009年第6期43-46,51,共5页 Journal of Transport Information and Safety
关键词 免疫遗传算法 公交线网优化 优化算法 immune genetic algorithm transit network optimization optimization algorithm
  • 相关文献

参考文献5

  • 1Steenbrink P A. Optimization of transport networks [M]. London: John Wiley & Sons,1974.
  • 2Wei Fan, Randy B, Machemehl. Optimal transit route network design problem with variable yransit demand: genetic algorithm approach[J].Journal of Transportation Engineering, 2006,132 ( 1 ) : 40-51.
  • 3Pattnaik S B, Mohan S,Tom V M. Urban bus transit route network design using genetic algorithm[J].Journal of Transportation Engineering, 1998, 124(4):368-375.
  • 4Tom V M, Mohan S. Transit route network design using frequency used genetic algorithm[J]. Journal of Transportation Engineering, 2003,129(2) : 186-195.
  • 5米焕霞,邢志栋,董建民,李玉毛.新的基于疫苗接种的免疫遗传算法[J].计算机工程与应用,2009,45(1):45-47. 被引量:7

二级参考文献5

共引文献6

同被引文献37

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部