期刊文献+

基于探测车数据的路段行程时间估计 被引量:2

Link Travel Time Estimation Based on Probe Vehicle Data
下载PDF
导出
摘要 利用探测车数据进行路段行程时间估计面临着两类误差:采样误差和非采样误差,从而导致估计结果精度不高和可靠性差。在回顾已有估计方法的基础上,有针对性地引入了自适应式卡尔曼滤波,建立了相应的状态方程和观测方程,利用相似时间特征的历史数据标定了状态转移系数,并对滤波进行了求解。以实际数据对估计方法进行了验证,平均相对误差为13.13%。研究表明,自适应式卡尔曼滤波能够应用到基于探测车数据的路段行程时间估计中来,并具有估计精度高、收敛速度快、参数少、对初值不敏感等优点。 Two kinds of errors including sampling error and non-sampling error can be encountered by using probe vehicle data to estimate link travel time,leading to low accuracy and low reliability of the estimation.The paper introduces an adaptive Kalman filter,sets up state equation and observation equation,and calibrates state transition parameter by using data with similar time features to obtain the solution of the filter.The estimation method is validated by using actual data,where the mean relative error is 13.13%.This result shows that adaptive Kalman filter can be applied to estimating link travel time from probe vehicle data with relatively high level of accuracy.This method converges rapidly and involves fewer parameters,which are also insensitive to initial values.
作者 胡小文
出处 《交通信息与安全》 2009年第6期60-65,共6页 Journal of Transport Information and Safety
关键词 交通信息 探测车 路段行程时间 自适应式卡尔曼滤波 traffic information probe vehicle link travel time adaptive Kalman filter
  • 相关文献

参考文献9

  • 1Wang Rui. A study on the methodology of expressway travel time estimation utilizing probe vehicle technologies[D]. Nagoya : Nagoya University, 2004.
  • 2Rohini B. Predicting speeds on urban streets using real-time GPS data[D]. Arlington: The University of Texas at Arlington, 2002.
  • 3Anthony F D. A framework to transform real-time GPS data derived from transit vehicles to determine speed-flow characteristics of arterials[D]. Arlington: The University of Texas at Arlington, 2003.
  • 4王力,张海,范耀祖.基于探测车技术的路段平均速度估计模型[J].交通运输系统工程与信息,2006,6(4):29-33. 被引量:8
  • 5Dailey D J, Cathey F W. Virtual speed sensors using transit vehicles as traffic Probes[C]//IEEE 5th International Conference on Intelligent Transportation Systems, Singapore: Center for Transportation Research, National University of Singapors, 2002.
  • 6Cathey F W, Dailey D J. Transit vehicles as traffic probe sensors[C]//Annual meeting of Transportation research board, 2002:560-565.
  • 7Mehra R K. On the Identification of variances and adaptive Kalman filtering[J].IEEE Transactions on automatic Control, 1970,15(2):175-184.
  • 8Godbole S S, Babock, Wilcox. Company. Kalman filtering with no a-priori information about noise- white noise case: Part I: Identification of covariance[C]//IEEE Conference on Decisinon and Control including the 12th symposium on Adaptive Processes, USA, SanDiego:1973.
  • 9房建成,申功勋,万德钧,周百令.GPS/DR组合导航系统自适应扩展卡尔曼滤波模型的建立[J].控制理论与应用,1998,15(3):385-390. 被引量:27

二级参考文献3

  • 1房建成,东南大学学报,1996年,26卷,3期,96页
  • 2Kao W W,Proceedings of VNIS’91,1991年,635页
  • 3Zhou H R,Control Dynamics,1984年,7卷,5期,596页

共引文献33

同被引文献14

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部