摘要
针对广泛应用于经济管理、工程设计和证券分析等实际问题中的一类凹多乘子规划问题(P)给出了一全局优化算法。利用问题(P)的等价问题(P1)和函数的凹包络,建立了问题(P1)的松弛凸规划(PR1(H)),通过对(PR1(H))可行域的细分以及一系列(PR1(H))的求解过程,从理论上证明了算法收敛到问题(P)的全局最优解。
Abstract:In this paper a global optimization algorithm is proposed for concave muhiplicative programming problem (P) ,which can be applied to economic management,engineering design, and portfolio analysis,and so on. Utilizing the equivalent problem ( PI ) of problem (P) and concave envelope,relaxed convex programming ( PR1 ( H ) ) about problem (P1) is established, through the successive refinement of the convex relaxation of the feasible region of the objective function and the solutions of a series of ( PR1 ( H ) ), and from theory the proof which the proposed algorithm is convergent to the global minimum is given.
出处
《河南机电高等专科学校学报》
CAS
2009年第6期151-153,共3页
Journal of Henan Mechanical and Electrical Engineering College
关键词
全局优化
凹多乘子规划
凹包络
global optimization
concave multiplicative programming
concave envelope