期刊文献+

Bayesian两变量层次模型及其在诊断试验系统评价中的应用 被引量:3

Application of Bayesian Bivariate Hierarchical Model in Meta Analysis of Diagnostic Test
下载PDF
导出
摘要 目的探讨Bayesian两变量层次模型的构建及其在诊断试验系统评价中的应用。方法将Bayesian两变量层次模型应用于传统Pap细胞学涂片诊断子宫颈癌准确性评价的历史Meta分析资料,估计相关的效应指标敏感度和特异度及筛查研究比随访研究的相对可信度。结果与经典综合受试者工作特征曲线方法相比,Bayesian两变量层次模型估计得到三个层次的效应指标,其中综合敏感度和特异度均数及95%可信区间分别为0.64(0.56,0.72)和0.74(0.67,0.80),预测敏感度和特异度均数及95%可信区间分别为0.61(0.12,0.96)和0.69(0.21,0.97),筛查研究比随访研究的相对可信度估计为1.3(0.59,2.48)。结论采用Bayesian两变量层次模型进行诊断试验Meta分析,更加灵活、有效,易于实现和解释,值得推广应用。 Objective To explore the application of Bayesian bivariate hierarchical model in meta analysis of diagnostic test. Methods Bayesian bivariate hierarchical model was utilized in the meta analysis of accuracy of conventional Pap cytology smear test for cervical cancer screening to estimate sensitivity and speciality of effect index and relative credibility of screening and follow-up studies. Result Three levels effect index were obtained, the means and 95% credible intervals of pooled sensitivity and speciality were 0.64 (0.56,0.72) and 0.74 (0.67,0.80), of the predicted sensitivity and speciality were 0.61 (0.12,0.96) and 0.69 (0.21,0.97), respectively. Estimation of relative credibility of screening over follow-up studies was 1.3 (0.59,2.48). Conclusion Bayesian bivariate hierarchical model is a flexible and effective method that is easy to realize and interpret for meta analysis of diagnostic test and worthy of being utilized and popularized.
出处 《循证医学》 CSCD 2009年第6期373-377,共5页 The Journal of Evidence-Based Medicine
关键词 Bayesian两变量随机效应模型 诊断试验 META分析 Pap传统细胞学涂片 Bayesian bivariate hierarchical model diagnostic test meta analysis conventional Pap cytology smear
  • 相关文献

参考文献5

  • 1Moses LE, Shapiro D, Littenberg B. Combining independent studies of a diagnostic test into a summary ROC curve: Dataanalytic approaches and some additional considerations [J]. Stat Med, 1993,12(14) : 1293-1316.
  • 2Rutter CM, Gatsonis CA. A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations [J]. Stat Med, 2001 ;20(19) :2865-2884.
  • 3Cong XY, Cox DD, Cantor SB. Bayesian meta-analysis of papanicolaou smear accuracy [J]. Gynecol Oncol, 2007, 107(1 Suppl 1 ) :S133-137.
  • 4Fahey MT, Irwig L, Macaskill P. Meta-analysis of Pap test accuracy[J].Am J Epidemiol, 1995,141(7) :680-689.
  • 5Verde PE. Meta analysis of diagnostic test data: Modern statistical approaches. (http://deposit.ddb.de/cgi-bin/dokserv? idn = 989853616&dok_var = dl&dok ext = pdf&filename = 989853616.pdf).

同被引文献20

  • 1曾宪涛,李胜,雷晋,郭毅.Review Manager 5软件在诊断准确性试验的Meta分析中的应用[J].湖北医药学院学报,2013,32(1):6-16. 被引量:33
  • 2邬兰,张永,曾宪涛.QUADAS-2在诊断准确性研究的质量评价工具中的应用[J].湖北医药学院学报,2013,32(3):201-208. 被引量:105
  • 3Pai M, Flores LL, Hubbard A, et al. Nucleic acid amplification tests in the diagnosis of tuberculous pleuritis: A systematic review and recta-analysis[J]. BMC Infect Dis, 2004,4:6.
  • 4Rutter CM, Gatsonis CA. Ahierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations [J ]. Star Med, 2001,20(19) :2865-2884.
  • 5Harbord RM, Whiting P. Metandi: Meta-analysis of diagnostic accuracy using hierarchical logistic regression [J]. The Stata J, 2009,9(2) :211-229.
  • 6Macaskill P. Empirical Bayes estimates generated in a hierarchical summary ROC analysis agreed closely with those of a full Bayesian analysis [J]. J Clin Epidemiol, 2004,57(9): 925 -932.
  • 7Chu H, Cole SR. Bivariate meta-analysis of sensitivity and specificity with sparse data: A generalized linear mixed model approach[J]. J Clin Epidemiol, 2006,59(12):1331-1332.
  • 8罗杰,冷卫东.系统评价/Meta分析理论与实践[M].北京:军事医学科学出版社,2013.
  • 9YaoJun Zhang,Jia Huang,MinShan Chen,Long R. Jiao.Preoperative vascular evaluation with computed tomography and magnetic resonance imaging for pancreatic cancer: A meta-analysis[J].Pancreatology.2012(3)
  • 10Les Irwig,Petra Macaskill,Paul Glasziou,Michael Fahey.Meta-analytic methods for diagnostic test accuracy[J].Journal of Clinical Epidemiology.1995(1)

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部