期刊文献+

基于RBF在线辨识的PID整定 被引量:18

Self tuning PID controller of RBF based on-line identification neural network
下载PDF
导出
摘要 针对非线性系统,提出一种新型的径向基函数(RBF)辨识网络的控制算法,根据RBF网络在线辨识被控对象的离散模型,得到被控对象Jacobian信息,利用BP网络在线自适应整定PID参数。通过RBF网络对系统在线辨识,克服不确定性对系统性能的不利影响,从而解决传统PID控制鲁棒性差及受精确数学模型限制的问题。通过实际算例验证,并与常规PID控制作对比,仿真结果表明,该控制算法有较强的自适应性和鲁棒性,其抗干扰和适应参数变化的能力都优于常规PID控制。 In view of nonlinear system, a new control algorithm of RBF identification network is proposed. First, RBF network identifies discrete model of plant on-line, which can get plant' s Jacobian information. Then, BP network on-line adaptively adjusts PID parameters. Using RBF network to on-line identify the system, which overcomes the adverse effect generated by the uncertainty, and the problem that the traditional PID control method has poor robustness and is limited to the accurate mathematical model is solved. The method is tested by practical example, and is compared to conventional PID control. Simulation results show that the control method has better adaptability and robustness, and has the advantages of higher antiinterference ability and adaptability to parameters' changing than conventional PID control.
作者 张静 裴雪红
出处 《电机与控制学报》 EI CSCD 北大核心 2009年第A01期157-160,168,共5页 Electric Machines and Control
基金 黑龙江省自然科学基金资助项目(F2008003)
关键词 径向基函数 系统辨识 PID整定 非线性系统 自适应性 radial basis function identification PID setting nonlinear systems adaptability
  • 相关文献

参考文献8

  • 1宫赤坤,华泽钊.RBF网络在线辨识的神经元控制[J].自动化仪表,2002,23(11):17-20. 被引量:14
  • 2LU Yingwei, SUNDARARAJAN N, SARATCHANDRAN P. Performance evaluation of a sequential minimal radial basis function neural network learning algorithm [ J]. IEEE Transactions on Neural Networks, 1998, 9(2) : 308 -318.
  • 3李广军,张晶,曾安平.基于改进RBF神经网络的PID整定[J].长春大学学报,2008,18(6):57-60. 被引量:11
  • 4MERZAGORA A C, BRACCHI F, CERUTTI S, et al. Evaluation and application of a RBF neural network for online single-sweep extraction of SEPs during scoliosis surgery [ J]. IEEE Transactions on Biomedical Engineering, 2007, 54(7) : 1300 -1308.
  • 5JIANG Jing, WEN Shengping, ZHAO Guoping. A melt temperature PID controller based on RBF neural Network [ C ]//International Colloquium on Computing, Communication, Control and Management. Guangzhou, China, 2007 : 172 - 175.
  • 6田明,戴汝为.基于动态BP神经网络的系统辨识方法[J].自动化学报,1993,19(4):450-453. 被引量:32
  • 7PEI Zhangcai, ZHANG Yanfang, TANG Zhiyong. Model reference adaptive PID control of hydraulic parallel robot based on RBF neural network [ C ]//IEEE lntermatioal Conference Robotics and Biomimetics. Sanya, China, 2007: 1383- 1387.
  • 8刘寅虎,李绍铭.基于动态RBF神经网络在线辨识的单神经元PID控制[J].系统仿真学报,2006,18(z2):804-807. 被引量:22

二级参考文献12

共引文献71

同被引文献128

引证文献18

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部