期刊文献+

一类离散m点边值问题的正解 被引量:5

Positive Solutions of a Discrete M-point Boundary Value Problem
下载PDF
导出
摘要 利用Krasnoselskii不动点定理,获得了一类离散m点边值问题存在至少一个正解的充分性条件,对已有文献中的一些结果进行了改进. By using the Krasnoselskii fixed-point theorem,some sufficient conditions under which a class of discrete m-point boundary value problem has at least one positive solution were obtained.The results improved those in known literatures.
出处 《佳木斯大学学报(自然科学版)》 CAS 2009年第6期922-926,共5页 Journal of Jiamusi University:Natural Science Edition
基金 国家自然科学基金项目(10771215) 湖南省教育厅一般资助项目(09C320)
关键词 M点边值问题 正解 不动点 m-point boundary value problem positive solution fixed-point theorem cone
  • 相关文献

参考文献5

  • 1Gupta C.P. , Solvability of a Three - point Nonlinear Boundary Value Problem for a Second Order Ordinary Differential Equation[J].J. Math. Anal. Appl.. 1992, 168 , 540- 551.
  • 2Gupta C. P., Ntouyas S. K and Tsamatos P. Ch, Solvablity of an m - point Boundary Value Problem for Second Order Ordinary Differential Equations[J]. J. Math. Anal. hppl.. 1995, 189 575- 584.
  • 3任景莉,任保献.一类离散m点边值问题正解的存在性与多重性[J].系统科学与数学,2005,25(1):78-86. 被引量:9
  • 4郭大均.非线性泛函分析[M].山东:山东科学技术出版社,2001:306.
  • 5Agarwal R. P., O' Re.gan D. , A Fixed - point Approach for Nonlinear Discrete Boundary Value Problems [J]. Compu. Math. Appl.. 1998, 36, 115-121.

二级参考文献10

  • 1郭大均 孙经先 等.非线性常微分方程泛函方法[M].济南:山东科技出版社,1995..
  • 2II'in V A and Moiseev E I. Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects. Differential Equations, 1987, 23(7): 803-810.
  • 3Gupta C P. Solvoblity of a three-point nonlinear boundary value problem for a second order ordinary differential equation. J Math Anal Appl ,1992, 168: 540-551.
  • 4Gupta C P, Ntouyas S-k and Tsamatos P Ch. On an m-point boundaxy value problem for second order ordinary differential equations. Nonlinear Analysis TMA, 1994, 23(11): 1427-1436.
  • 5Feng W. On a m-point nonlinear boundary value problems with nonlineax growth. J Math Anal Appl , 1997, 212: 467-480.
  • 6Ma R. Existence theorems for a second order three-point boundary value problem. J Math Anal Appl , 1997, 212: 430-442.
  • 7Ma R. Positive solutions of a nonlinear three-point boundaxy value problem. Electron J Differential Equations, 1999, 34: 1-8.
  • 8Ma R and Castaneda N. Existence of solutions of nonlinear m-point boundaxy value problems. J Math Anal Appl , 2001, 256: 556-567.
  • 9Deimlinz K. Nonlinear Functional Analysis. Berlin: Springer-Verlag,1985.
  • 10Agarwal R P and O'Regan D. A fixed-point approach for nonlinear discrete boundary value problems. Compu Math Appl , 1998, 36: 115-121.

共引文献9

同被引文献22

  • 1任景莉,任保献.一类离散m点边值问题正解的存在性与多重性[J].系统科学与数学,2005,25(1):78-86. 被引量:9
  • 2郭大均.非线性泛函分析[M].山东:山东科学技术出版社,2001:306.
  • 3GUPTA C P.Solvability of a three-point nonlinear boundary value poroblem for a second order ordinary differential equation[J].J.Math.Anal.Appl.,1992,168:540-551.
  • 4GUPTA C P,NTOUYAS S K,TSAMATOS P CH.Solvablity of an m-point boundary value problem for second order ordinary differential equations[J].J.Math.Anal.Appl.,1995,189:575-584.
  • 5FENG W,WEBB J R L.Solvability of m-point boundary value problems with nonlinear growth[J].J.Math.Anal.Appl.,1997,212:467-480.
  • 6MA R Y.Positive solutions for a nonlinear three-point boundary value problem[J].Electron.J.Differential Equations,1999,34:1-8.
  • 7MA R Y.Positive solutions for second-order three-point boundary value problems[J].J Applied Mathematics Letters,2001,14:1-5.
  • 8KRASNOSELSKII M A.Positive solutions of operator equations[M].Groningen:Noordhoff,1964.
  • 9AGARWAL R P,O′REGAN D.A fixed-point approach for nonlinear discrete boundary value problems[J].J.Compu.Math.Appl.,1998,36:115-121.
  • 10Gupta C P.Solvability of a Three-point Nonlinear Boundary Value Problem for a Second Order Ordinary Differential E-quation[J].J.Math.Anal.Appl.,1992,168:540-551.

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部