摘要
在p-一致光滑的Banach空间(1<p≤2)中,研究了非自映像的Reich公开问题,并在张(Nonlinear A-nalysis TMA,2007,66:2 364-2 374.)最近研究结果的基础上,作了如下的推广和改进:(1)把第一型修正的Reich序列推广到第一型带误差修正的Reich序列.(2)延拓算子的投影范围由自映象到非自映象.(3)去掉了原先的假设条件limn→∞an=0,∑∞在p-一致光滑的Banach空间(1<p≤2)中,研究了非自映像的Reich公开问题,并在张(Nonlinear A-nalysis TMA,2007,66:2 364-2 374.)最近研究结果的基础上,作了如下的推广和改进:(1)把第一型修正的Reich序列推广到第一型带误差修正的Reich序列.(2)延拓算子的投影范围由自映象到非自映象.(3)去掉了原先的假设条件li mn→∞an=0,∑∞n=0an=∞和∑∞n=0(kn-1)<∞.
We give an affirmative answer to the Reich's open problem in p-uniformly smooth Banaeh spaces (1 〈 p≤2), and on the basis of the latest research results of Chang (Nonlinear Analysis TMA, 2007, 66:2 364-2 374), we attain the following extending and improving: (1) Extend the iteration process from the primary first type of modified Reich sequence to the first type of modified Reich sequence with errors. (2) Enlarge the projection range of the mapping T from self-mapping to nonself-mapping. (3)Removethe primary assumptions liman n→∞=0,n=0∑an=∞ and n=0∑(kn-1)〈∞.
出处
《湘潭大学自然科学学报》
CAS
CSCD
北大核心
2009年第4期7-13,共7页
Natural Science Journal of Xiangtan University
基金
江西省自然科学基金项目(2007GZS1760)
关键词
非扩张映象
P-一致光滑
带误差的迭代逼近
不动点
nonexpansive mapping
p-uniformly smooth
iterative sequence with errors
fixed point