期刊文献+

关于p-一致光滑Banach空间中非自映像的Reich公开问题(英文)

On Reich's Open Problem on Nonself Mappings in p-Uniformly Smooth Banach Spaces
下载PDF
导出
摘要 在p-一致光滑的Banach空间(1<p≤2)中,研究了非自映像的Reich公开问题,并在张(Nonlinear A-nalysis TMA,2007,66:2 364-2 374.)最近研究结果的基础上,作了如下的推广和改进:(1)把第一型修正的Reich序列推广到第一型带误差修正的Reich序列.(2)延拓算子的投影范围由自映象到非自映象.(3)去掉了原先的假设条件limn→∞an=0,∑∞在p-一致光滑的Banach空间(1<p≤2)中,研究了非自映像的Reich公开问题,并在张(Nonlinear A-nalysis TMA,2007,66:2 364-2 374.)最近研究结果的基础上,作了如下的推广和改进:(1)把第一型修正的Reich序列推广到第一型带误差修正的Reich序列.(2)延拓算子的投影范围由自映象到非自映象.(3)去掉了原先的假设条件li mn→∞an=0,∑∞n=0an=∞和∑∞n=0(kn-1)<∞. We give an affirmative answer to the Reich's open problem in p-uniformly smooth Banaeh spaces (1 〈 p≤2), and on the basis of the latest research results of Chang (Nonlinear Analysis TMA, 2007, 66:2 364-2 374), we attain the following extending and improving: (1) Extend the iteration process from the primary first type of modified Reich sequence to the first type of modified Reich sequence with errors. (2) Enlarge the projection range of the mapping T from self-mapping to nonself-mapping. (3)Removethe primary assumptions liman n→∞=0,n=0∑an=∞ and n=0∑(kn-1)〈∞.
作者 傅湧
出处 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2009年第4期7-13,共7页 Natural Science Journal of Xiangtan University
基金 江西省自然科学基金项目(2007GZS1760)
关键词 非扩张映象 P-一致光滑 带误差的迭代逼近 不动点 nonexpansive mapping p-uniformly smooth iterative sequence with errors fixed point
  • 相关文献

参考文献11

  • 1ASPLUND E. Positivity of duality of mappings [J]. Bull Amer Math Soc, 1967, 73: 200--203.
  • 2REICH S. Some problems and results in fixed point theory [J]. Contem Math, 1983, 21: 179--187.
  • 3REICH S. Strong convergence theorems for resolvent of accretive mappings in Banach spaces [J]. J Math Anal Appl, 1980, 75 : 287--292.
  • 4WITTMANN R. Approximation of fixed points of nonexpansive mappings [J]. Arch Math, 1992, 58: 486--491.
  • 5SHIOJI N, TAKAHASHI W. Strong convergence of approximated sequence for nonexpansive mappings [J]. Proc Amer Math Soc, 1997, 125 (12): 3641-3 645.
  • 6TAKAHASHI W. On Reich's strong convergence theorems for resolvents of accretive operators [J]. J Math Anal Appl, 1984, 104: 546-553.
  • 7CHANG S S, JOSEPH LEE H W, CHAN K C. On Reich's strong convergence theorem for asymptotically nonexpansive mapping in Banach spaces [J]. Nonlinear Analysis TMA, 2007, 66: 2 364--2 374.
  • 8MAN K K, ANTON Z. Norm inequalities for derivatives and differences [M]. Berlin: Springer--Verlag , 1992.
  • 9XU Z B, ROACH G F. Characteristic inequalities in uniformly convex and uniformly smooth Banach space [J]. Math Anal Appl, 1991, 157: 189-210.
  • 10OSILIKE M O. Stable iteration procedures for nonlinear pseudocontractive and accretive operators in arbitary Banach spaces [J]. PureAppl Math, 1997, 28:1 017--1 029.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部