期刊文献+

室内环境下结合里程计的双目视觉SLAM研究 被引量:3

Research on Binocular Vision SLAM with Odometer in Indoor Environment
下载PDF
导出
摘要 针对视觉SLAM要解决的定位精度低和鲁棒性低的问题,提出一种基于双目视觉传感器与里程计信息的扩展卡尔曼滤波SLAM方法,应用改进的SIFT算子提取双目视觉图像的环境特征获得特征点,并构建出视觉特征地图;应用扩展卡尔曼滤波算法融合视觉信息与机器人位姿信息,完成同时定位与地图创建。这种方法既可以解决单目视觉利用特殊初始化方法获取特征点信息不准确的问题,也可以避免双目视觉里程计利用图像信息恢复运动带来的计算量极大和运动估计不鲁棒的缺点。仿真实验表明,在未知室内环境下,算法运行稳定,定位精度高。 With the aim of solving the low positioning accuracy and low robustness problems of vision SLAM algorithm,Extended Kalman Filter(EKF) method based on binocular vision and odometer is proposed in this paper.Feature point can be obtained by extracting image features with improved SIFT algorithm,and the vision feature map is constituted.SLAM is completed by using the information of binocular vision and robot position with EKF.This method can either solve the monocular vision inaccuracy problem of feature point information obtained by special initialization method or avoid the enormous computation brought about by binocular vision odometer using image information to restore movement as well as the in-robust disadvantages of motion estimation.The results from simulation experiments indicate that in the unknown indoor environments,this algorithm operation is stable,and the positioning accuracy is high.
出处 《西安理工大学学报》 CAS 北大核心 2009年第4期466-471,共6页 Journal of Xi'an University of Technology
基金 国家自然科学基金资助项目(10872160)
关键词 SLAM 双目视觉 里程计 SIFT 扩展卡尔曼滤波 SLAM binocular vision odometer SIFT Extended Kalman Filter(EKF)
  • 相关文献

参考文献10

  • 1Smith R, Self M, Chesseman P. On the representation and estimation of spatial uncertainty [ J ]. International Journal of Robotics Resarch, 1986,5 (4) :56-58.
  • 2Durrant-Whyte H, BaiLey T. Simultaneous localization and mapping. Part I[ J]. IEEE Robotics and Automation Magazine, 2006,13 (3) :99-108.
  • 3王耀南,余洪山.未知环境下移动机器人同步地图创建与定位研究进展[J].控制理论与应用,2008,25(1):57-65. 被引量:27
  • 4Davison A J. Real-time simultaneous localication and mapping with a single camera [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2002,24 ( 7 ) : 865- 880.
  • 5Kim G H, Kim J S, Hong K S. Vision-Based Simultaneous Localization and Mapping with Two Cameras: 2005 IEEE/ RSJ International Conference on Intelligent Robots and Systems[ C]. Tokyo: IEEE Press,2005:3 401-3 405.
  • 6Ortega J S, Lemaire T, Devy M, et al. A Monin Delayed vs Undelayed Landmark Initialization for Bearing only SLAM: Proceeding of the IEEE International Onference on Robotics and Automation Workshop on SLAM [ C ]. Japan: IEEE Press, 2005 : 1-3.
  • 7王彭林,石守东,洪小伟.基于单目视觉和里程计的SLAM算法研究[J].计算机仿真,2008,25(10):172-175. 被引量:10
  • 8吴功伟,周文晖,顾伟康.基于视差空间的双目视觉里程计[J].传感技术学报,2007,20(6):1432-1436. 被引量:10
  • 9Davison A J, Nobuyuki K. 3D Simultaneous Localization and Map Building Using Active Vision for a Robot Moving on Undulating Terrain: Proceedings of the IEEE International Conference on Computer Vision and Recognization [C] . Hawaii: IEEE Press, 2001: 384- 391.
  • 10Lowe D . Distinctive image features from scale-invariant keypoints [ J ]. International Journal of Computer Vision, 2004,60(2) :91-110.

二级参考文献91

  • 1王璐,蔡自兴.未知环境中移动机器人并发建图与定位(CML)的研究进展[J].机器人,2004,26(4):380-384. 被引量:45
  • 2陈卫东,张飞.移动机器人的同步自定位与地图创建研究进展[J].控制理论与应用,2005,22(3):455-460. 被引量:60
  • 3张恒,樊晓平,刘艳丽.移动机器人同步定位与地图构建研究进展[J].数据采集与处理,2005,20(4):458-465. 被引量:7
  • 4Campbell J,Sukthankar R,and Nourbakhsh I.Techniques for Evaluating Optical Flow for Visual Odometry in Extreme Terrain[C]// Proceedings of International Robotics Symposium,October 2004.
  • 5Nistér D,Naroditsky O,and Bergen J,Visual Odometry[C]//Proc.IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Volume 1,2004,652-659.
  • 6Nistér D,Preemptive RANSAC for Live Structure and Motion Estimation[C]// IEEE International Conference on Computer Vision,Nice,2003,199-206.
  • 7Olson C F,Matthies L H,Schoppers M,and Maimone M W,Rover Navigation Using Stereo Ego-Motion[J],Robotics and Autonomous Systems,2003,43:215-229.
  • 8Lowe D G.1999.Object Recognition From Local Scale Invariant Features[C]// Proceedings of the Seventh International Conference on Computer Vision (ICCV'99),1150-1157,Kerkyra,Greece,September 1999.
  • 9Lowe D G.Distinctive Image Features From Scale-Invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 10Umeyama S.Least-Squares Estimation of Transformation Parameters Between Two Point Patterns[C]//IEEE Trans.Pattern Analysis and Machine Intelligence,April 1991,13(4).

共引文献42

同被引文献40

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部