期刊文献+

基于经验模态分解自适应滤波的胎儿心电信号提取 被引量:5

Extraction the signal of fetal electrocardiogram based on the optimal empirical mode decomposition adaptive filter
下载PDF
导出
摘要 目的提出了一种基于经验模态分解自适应滤波的胎儿心电信号提取法。方法首先利用经验模态分解算法对孕妇腹部信号进行分解得到一组内模函数(IMF),然后将这组IMF作为自适应滤波器的主输入信号,并将孕妇胸部信号作为参考输入信号。通过学习算法自适应组合IMF,滤除母体心电信号成分,从而提取胎儿心电信号。结果与结论基于仿真和临床的实验结果表明,该方法提取的胎儿心电信号误差小,性能优于传统的最小均方和归一化最小均方自适应滤波算法。 Objective To develope a new method based on the adaptive empirical mode decomposition(EMD) for extraction the signal of fetal electrocardiogram(FECG). Methods In the proposed method,by using the EMD algorithm,the pregnant abdominal signal was decomposed into several intrinsic mode functions(IMF),then which were sent into an adaptive filter as the primary input,the maternal chest signal was adopted as the reference input. Through learning the combination of algorithm self adaptive IMF maternal electrocardiogram (MECG) was eliminated from the abdominal signal,while the FECG signals were remained. Results and Conclusion The simulation and clinical experiment results showed that the errors of the extracted FECG signals are smaller. It can be concluded that the performance of the proposed method is superior to those based on the conventional adaptive filter.
出处 《生物医学工程与临床》 CAS 2010年第1期5-9,共5页 Biomedical Engineering and Clinical Medicine
基金 国家自然科学基金项目(60861001) 云南省自然科学基金项目(2009CD016)
关键词 经验模态分解 自适应算法 母体心电图 胎儿心电图 empirical mode decomposition maternal electrocardiogram adaptive filter fetal electrocardiogram
  • 相关文献

参考文献7

  • 1Zhang Z, Zhang Y. Extraction of temporally correlated sources with its application to non-invasive fetal electrocardiogram extraction[J]. Neurocomputing, 2006, 69(7-9): 894-899.
  • 2刘森 周礼果 杨福生.应用自适应噪声抵消系统作胎儿心电信号处理以实现胎儿监护[J].中国生物医学工程学报,1985,4(4):220-229.
  • 3葛毅,曹宇,宫琴,叶大田.基于聚类分析和模糊数学的胎儿心电检测[J].清华大学学报(自然科学版),1999,39(5):20-23. 被引量:10
  • 4Alay M, Mulder E. Examining fetal heart-rate variability using matching pursuit[J]. IEEE Engineering in Medicine and Biology, 1996, 15(5): 64-67.
  • 5刘世金,张榆锋,龚璞,冯德鸿.NLMS与RLS算法的仿真比较及其在FECG提取中的应用[J].计算机仿真,2006,23(4):78-81. 被引量:5
  • 6Weng B, Bamer K. Optimal and bidirectional optimal empirical mode decomposition [C]// IEEE Signal Processing Society. 2007 International Conference on Acoustics, Speech and Signal Processing (ICASSP'07). 2007: 1501-1504.
  • 7Huang NE, Shen Z, Long SR. The empirical mode decomposition method and Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.

二级参考文献16

  • 1林家瑞,朱帆三,陈瑞红,邓东云.强背景噪声下微弱生理电信号的检测与处理[J].华中理工大学学报,1994,22(9):119-123. 被引量:5
  • 2郭桂蓉 谢维信.模糊模式识别[M].长沙:国防科技大学出版社,1993..
  • 3周礼杲,上海生物医学工程,1995年,16卷,4期,43页
  • 4卓晶如,临床胎儿心电图,1995年
  • 5郭桂蓉,模糊模式识别,1993年
  • 6冯晋臣,模糊模式识别,1992年
  • 7刘森 周礼果 杨福生.应用自适应噪声抵消系统作胎儿心电信号处理以实现胎儿监护[J].中国生物医学工程学报,1985,4(4):220-229.
  • 8M Tanaka,et al.Fast Projection Algorithm and Its Step Size Control[J].ICASSP′95(2):945-948.
  • 9D Slock.On the Convergence Behavior of the LMS and the Normalized LMS Algorithms.IEEE Transactions on Signal Processing,1993,41(9):2811-2825.
  • 10N J Bershad.Analysis of the normalized LMS algorithm with Gaussian inputs[J].IEEE Trans.Acoust.,Speech,Signal Processing,1986,34:793-806.

共引文献15

同被引文献34

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部