期刊文献+

基于误差传递网络的工序流波动分析 被引量:15

Fluctuation Analysis of Process Flow Based on Error Propagation Network
下载PDF
导出
摘要 减少工序的波动水平是提高工序加工质量的关键,在多工序加工过程中,由于工序间存在着复杂的交互影响效应,波动源的有效识别是一个重要问题。针对这一问题,提出一种基于误差传递网络的节点波动效应评价方法,基于线性关系建立工序间波动传递方程,进而构建由零件加工特征、加工要素节点组成工序流误差传递网络,在此基础上,定义节点的波动传递系数,并给出不同节点的波动效应值量化方法,通过考察各节点波动效应值,确定工序流需要优先进行改进的工序及加工要素节点。一个三工序加工过程被用于验证提出方法,结果表明该方法能够识别工序流薄弱工序节点。 It is a key issue to reduce process fluctuation for improving machining quality of workpiece. For multistage machining processes, it is diffieult to identify the fluctuation sources of process flow due to the complicated interactive effects among different stages. In view of this issue, a fluctuation evaluation and identification method is proposed based on machining error propagation network. A fluctuation propagation equation of process flow is established, and a machining error propagation network is constructed, which consists of machining form feature and machining element nodes. Based on this, fluctuation propagation coefficient is defined, and node state variation risk (NSVR) of different node is measured, and the priority of node can be identified according to its NSVR. A three stage process of a box part is used to verify the proposed method.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2010年第2期14-21,共8页 Journal of Mechanical Engineering
基金 国家重点基础研究发展计划(973计划 2005CB724106) 国家高技术研究发展计划(863计划 2007AA00Z108)资助项目
关键词 工序流 加工特征 误差传递网络 波动辨识 节点波动效应值 Process flow Machining,form feature Machining error propagation network Fluctuation identification Node state variation risk(NSVR)
  • 相关文献

参考文献10

  • 1LAWLESS J F, MACKAY R J, ROBINSON J A. Analysis of variation transmission in manufacturing processes-Part I[J]. Journal of Quality Technology, 1999, 31(2): 131-142.
  • 2LINN R J, AU E, TSUNG F. Process capability improvement for multistage processes[J]. Quality Engineering, 2002, 15(2): 281-292.
  • 3KERN D, THORNTON A. Modeling variation propagation through a manufacturing processes[C]// American Society of Mechanical Engineers. 2003 ASME Design Engineering Technical Conference and Computers and Information in Engineering Conference, September 2-6, 2003, Chicago, IL, United States. New York: ASME, 2003: 157-165.
  • 4HUANG Qiang, SHI Jianjun. Variation transmission analysis and diagnosis of multi-operational machining processes[J]. IIE Transactions, 2004, 36(9): 807-815.
  • 5CEGLAREK D, HUANG W, ZHOU S, et al. Time-based competition in multistage manufacturing: Stream-of- variation analysis (SOVA) methodology-review [J]. The International Journal of Flexible Manufacturing Systems, 2004, 16(1): 11-44.
  • 6TSUNG Fugee, LI Yanting, JIN Ming. Statistical process control for multistage manufacturing and service operations: a review[C]// Institute of Electrical and Electronics Engineers. 2006 IEEE International Conference on Service Operations and Logistics, and Informatics, SOLI 2006, June 21-23, 2006, Shanghai, China. Piscataway: IEEE, 2006: 752-757.
  • 7ZANTEK P F, WRIGHT G P, PLANTE R D. A self-starting procedure for monitoring process quality in multistage manufacturing systems[J].IEE Transaction, 2006, 38(4): 293-308.
  • 8THORNTON A C. Variation risk managemem using modeling and simulation[J]. Journal of Mechanical Design, 1999, 121(2). 297-304.
  • 9JOHANSSON P, CHAKHUNASHVILI A, BARONE S, et al. Variation mode and effect analysis: a practical tool for quality improvement[J]. Quality and Reliability Engineering International, 2006, 22(8): 865-876.
  • 10LILT Daoyu, JIANG Pingyu. Modeling of machining error propagation network for multistage machining processes [J]. Lecture Notes in Computer Science, 2008, 5 315:408-418.

同被引文献156

引证文献15

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部