摘要
应用计算机编程,对素数原根进行了研究,通过对100亿以下素数进行了验证,得出了两个猜想:(1)若P和q=4p+1都是素数,则q的最小原根为2;(2)若p和q=2p+1都是素数,当p=1(mod 4)时,2是q的最小原根,而当P=3(mod4)时,2不是q的最小原根。在验证这两个猜想的过程中,还发现对于P和2^kp+1都为素数时,2不是2^k p+1的最小原根(k〉2)。
The primitive root of prime number have been studied by application of computer programming. Two conjectures are obtained on basis of the verification on the prime numbers below 10 billion: (1) For any prime p and q, if q = 4 p + 1 ,then 2 is the least primitive root of q. (2) For any prime p and q, q = 2 p + 1 ,ifp = 1(med 4) ,then 2 is the least primitive root of q, if p = 3(reed 4), then 2 is not the least primitive root of q. In the course of the verification on these two conje ctures, the autcor found that for any prime p and q, if q = 2kp + 1, k 〉 2, then 2 is not the least primitive root of q.
出处
《华东交通大学学报》
2009年第6期98-100,130,共4页
Journal of East China Jiaotong University
关键词
素数
原根
算法
prime
primitive root
algorithm