期刊文献+

改进粒子群与支持向量机混合的特征变换 被引量:4

Hybrid Feature Transformation Based on Modified Particle Swarm Optimization and Support Vector Machine
下载PDF
导出
摘要 研究了数据挖掘中通过特征变换的数据预处理来提高支持向量机(SVM)分类精度的方法,提出了改进粒子群优化(PSO)和SVM混合的方法.用推广t统计、Fisher判别式和随机森林的线性加权度量来排序特征,得到预选特征子集,再用启发式信息加速改进PSO搜索特征的线性变换因子,并用二进制PSO对特征变换子集进行特征选择,在后处理中通过格子搜索获取了高精度SVM分类器.在NIPS 2003的madelon及10个UCI数据集上的实验表明,与有C-SVM分类精度相比,新方法在4个数据集上的精度更高. Linear feature transformation was investigated to improve the classification accuracy of support vector machine (SVM) by preprocessing, and a hybrid method combining the modified particle swarm optimization (PSO) with SVM was presented. In the method, features top-ranked were preselected by linear weighted combination of t-statistic extended, Fisher's discriminant ratio and random forests feature importance scores, and a modified PSO and novel heuristic info were used to attract swarm to find optimal linear feature transformation factors. Features on dataset transformed were further refined by binary PSO, and a grid method was utilized to obtain SVM with high accuracy. Experiments on madelon of neural information processing system (NIPS) 2003 and ten data sets of university of California Irvine (UCI) verify this method has higher accuracy on 4 data sets than original C-SVM.
作者 熊文 王枞
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2009年第6期24-27,52,共5页 Journal of Beijing University of Posts and Telecommunications
基金 高等学校博士学科点专项科研基金项目(20060013007) 国家科技支撑计划项目(2007BAH05B02-04) 北京市自然科学基金项目(4092029)
关键词 粒子群 特征变换 支持向量机 特征选择 分类 particle swarm optimization feature transformation support vector machine feature selection classification
  • 相关文献

参考文献10

  • 1Vapnik V N. The nature of statistical learning theory [M]. New York: Springer-Verlag, 1995: 1-15.
  • 2Kennedy J, Eberhart R C. Particle swarm optimization [C]//1995 International Conference on Neural Networks (ICNN1995). Australia: IEEE Press, 1995: 1942- 1948.
  • 3Zhang D Q, Chen S, Zhou Z H. Constraint score., a new filter method for feature selection with pairwise constraints[J]. Pattern Recognition, 2008, 41(5): 1440- 1451.
  • 4Kohavi R, John C- H. Wrappers for feature subset selection[J ]. Artificial Intelligence, 1997(1-2) : 273-324.
  • 5Das S. Filters, wrappers and a boosting-based hybrid for feature selection [ C]//2001 International Conference on Machine Learning (ICML2001). Williamstown : Morgan Kaufmann, 2001: 74-81.
  • 6Ni B, Liu J. A hybrid filter/wrapper gene selection method for microarray classification [ C] // 2004 International Conference on Machine Learning and Cybernetics (ICMLC2004). Shanghai: IEEE Press, 2004: 2537- 2542.
  • 7王坤坤,尹怡欣.基于一种改进PSO的移动机器人路径规划[J].北京邮电大学学报,2006,29(z2):70-74. 被引量:3
  • 8Jiang M H, Yuan X C. Construction and application of PSO-SVM model for personal credit scoring[J]. Lecture Notes in Computer Science, 2007 (4490) : 158-161.
  • 9Breiman L. Random forests [ J ]. Machine Learning, 2001 (45): 5-32.
  • 10Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm [C]///1997 International Conference on Systems, Man and Cybernetics (SMC1997). Piscataway: IEEE Press, 1997: 4104- 4109.

二级参考文献6

  • 1[3]Hwang Y K,Ahuja N.A potential field approach to path planning[J].IEEE Trans on Robotics and Automation,1992,8(1):23-32.
  • 2[4]Henrich D.Fast motion planning by parallel processing-a review[J].Journal of Intelligent and Robotic Systems,1997,20(1):45-69.
  • 3[5]Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc IEEE Int'l Conf on Neural Networks (Perth,Australia).Piscataway J:IEEE Service Center,1995:1942-1948.
  • 4[6]Qin Yuanqing,Sun Debao,Li Ning,et al.Path planning for mobile robot using the particle swarm optimization with mutation operator[C]//Proc Third Int'l Conf on Machine Learning and Cybernetics.Shanghai:IEEE Press,2004:2473-2478.
  • 5[8]Gaing Z L.Particle swarm optimization to solving the economic dispatch considering the generator constraints[J].IEEE Trans on Power Systems,2003,18(3):1187-1195.
  • 6[9]Clerc M,Kennedy J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space[J].IEEE Trans on Evolutionary Computation,2002,6(1):58-73.

共引文献2

同被引文献29

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部