期刊文献+

基于Shapley熵和Choquet积分的层次化风险评估 被引量:8

Hierarchical Risk Assessment Based on Shapley Entropies and Choquet Integrals
下载PDF
导出
摘要 针对评估要素关联关系的模糊性和复杂性以及属性关联性合成权重在实际评估中难以获得的特点,提出了基于Shapley熵和Choquet积分的层次化评估模型.该模型通过引入多人合作对策中的Shapley值概念,基于最大Shapley熵原理,运用逐级Choquet积分融合的层次分析法解决了贫信息条件下网络系统风险综合评估问题.某园区子网信息安全风险评估实例验证了该模型的有效性. The existing information security risk assessment approaches commonly ignore the relations among the assessment factors. To overcome the ambiguity and complexity of relations among the factors, and the difficulty of acquiring the correlative fusion weights of attributes in practice, a hierarchical risk assessment model based on Shapley entropies and Choquet integrals is proposed. By introducing the Shapley value concept of n-person cooperative game theory into the assessment model, this approach solves the information security risk assessment problem under poor information conditions by using the analytic hierarchy process with Choquet integrals from bottom to top, which is based on the maximum Shapley entropy principle. The effectiveness of the proposed approach is illustrated via an actual information security risk assessment for four subnets of the intranet in a community.
作者 吕镇邦 周波
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2009年第6期83-87,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(60573036) 航空基础科学基金项目(03F31007)
关键词 信息安全 风险评估 Shapley熵 CHOQUET积分 层次分析法 information security risk assessment Shapley entropy Choquet integral analytic hierarchy process
  • 相关文献

参考文献8

  • 1Jones J A. An introduction to factor analysis of information risk (FAIR): a framework for understanding, analyzing, and measuring information risk[J]. Norwich University Journal of Information Assurance, 2006, 2( 1 ) : 1-67.
  • 2汤永利,徐国爱,钮心忻,杨义先.基于信息熵的信息安全风险分析模型[J].北京邮电大学学报,2008,31(2):50-53. 被引量:32
  • 3赵冬梅,马建峰,王跃生.信息系统的模糊风险评估模型[J].通信学报,2007,28(4):51-56. 被引量:63
  • 4Yager R R. On the entropy of fuzzy measures[J]. IEEE Transactions on Fuzzy Systems, 2000, 8(4) : 453-461.
  • 5Torra V, Narukawa Y. The interpretation of fuzzy integrals and their application to fuzzy systems[J]. Interna tional Journal of Approximate Reasoning, 2006, 41 ( 1 ) 43-58.
  • 6Peleg B, Sudhoher P. Introduction to the theory of cpoperative games[ M]. New York: Springer-Verlag, 2007.
  • 7Dukhovny A. General entropy of general measures[J ]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002, 10(3) : 213-225.
  • 8Satty T L. The analytic hierarchy process [ M]. New York: McGraw-Hill, 1980.

二级参考文献22

共引文献87

同被引文献74

引证文献8

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部