期刊文献+

用Richardson-Urbanke算法实现有效编码的非二元准循环LDPC码

Nonbinary Quasi-Cyclic LDPC Codes with Efficient Richardson-Urbanke Encoding Algorithm
下载PDF
导出
摘要 为了实现有效编码,提出一类可以利用Richardson-Urbanke算法的非二元准循环低密度校验码(QC-LDPC)码.校验矩阵的右侧部分列重均为2,可用来构造规则和非规则码.对校验矩阵的约束保证了这类码具有线性编码复杂度.仿真结果表明,所提出的码和高阶调制结合,其性能优于渐进边增长(PEG)构造的码,并可获得接近Shannon限的性能. In order to implement efficient encoding, a class of nonbinary quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed, which can be encoded with Richardson-Urbanke algorithm. The right part of the parity-check matrix has weight-2 columns, which allows the construction of both regular and irregular codes. Constraints on the parity-check matrix ensure a linear encoding complexity. Simulation results show that the proposed codes, when combined with higher order modulation, perform favorably with the codes constructed by the progressive-edge-growth (PEG) constructed code and close to the Shannon limits.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2009年第6期93-96,共4页 Journal of Beijing University of Posts and Telecommunications
基金 国家重点基础研究发展计划项目(2010CB328300) 国家自然科学基金项目(U0635003) 111基地项目(B08038)
关键词 低密度校验码 非二元 准循环 Richardson-Urbanke算法 谱效率 SHANNON限 low-density parity-check codes nonbinary quasi-cyclic Riehardson-Urbanke algorithm spectral efficiency Shannon limit
  • 相关文献

参考文献10

  • 1Gallager R G. Low density parity check codes[J]. IEEE Trans Inf Theory, 1962, 8(1).. 21-28.
  • 2Mackay D J C, Neal R M. Near Shannon limit performance of low density parity check codes[J ]. lEE ElectronLett, 1996, 32(18) : 1645-1646.
  • 3Richardson T J, Urbanke R L. The capacity of low-density parity-check codes under message-passing decoding [J]. IEEE Trans Inf Theory, 2001, 47(2): 599-618.
  • 4Davey M C, Mackay D J C. Low-density parity check codes over GF(2q) [J]. IEEE Communications Letters, 1998, 2(6): 165-167.
  • 5Davey M C. Error-correction using low-density paritycheck codes [ D ]. Cambridge: University of Cambridge, 1999.
  • 6Davey M C, MacKay D J C. Monte Carlo simulations of infinite low density parity check codes over GF( q )[ C]// ProcIntWorkshop on Optimal Codes and related Topics (OC'98), Bulgaria: [s.n.], 1998: 9-15.
  • 7Hu X Y, Eleftheriou E. Binary representation of cycle Tanner-graph GF ( 2^b ) codes [ C ] //Proc IEEE Intern Confon Communications. Paris: [s. n. ], 2004: 528- 532.
  • 8Richardson T J, Urbanke R. Efficient encoding of low- density parity-check codes[J]. IEEE Trans Inf Theory, 2001, 47(2): 638-656.
  • 9Myung S, Yang K, Kim J. Quasi-cyclic LDPC codes for fast encoding[J]. IEEE Trans Inf Theory, 2005, 51 (2) : 2894-2901.
  • 10Poulliat C, Fossorier M, Declercq D. Design of regular (2, dc )-LDPC codes over GF( q ) using their binary images[J ]. IEEE Trans Communication, 2008, 56 (3) : 1626-1635.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部