期刊文献+

分形理论在装甲车辆滚动轴承故障诊断中的应用 被引量:4

Application of Fractal Theory in Fault Diagnosis of Armored Vehicle Rolling Bearing
下载PDF
导出
摘要 滚动轴承由于其工作过程受到载荷、安装、润滑状态等因素的影响,会产生与构件特征频率有关的外圈、内圈及滚动体故障。由于滚动轴承的时域波形在一定的时域长度下存在自相似性,可用分形理论来描述其时间序列的不规则度。考虑到滚动轴承故障信号的特殊性,进行了短时分形维数与分形滤波研究,探讨了滤波器的滤波效果与模糊控制参数间的关系,获得了滚动轴承在常见故障状态下的网格维数和网格维数距离。提出了利用分形维数自动调整模糊控制参数的自适应动态调整方法,有效地改善了噪声滤除效果。针对装甲车辆滚动轴承的正常状态、外圈裂纹、内圈裂纹、滚动体损坏和待测信号5种状态进行了分析与诊断,得到了较好的诊断结果。 Rolling bearing will produce outer race, inner race and rolling body faults related to component character frequency because its work process suffer from the influence from the load, fixing, lubrication state and so on. Because time-domain waveform of the rolling bearing exists self-comparability under definite time-domain length, the abnormity of time sequence can be described by use of fractal theory. To take account of particularity of rolling bearing fault signal, the short-time fractal dimension and fractal filter technology were studied, the relationship between the filter processing results and its fuzzy control parameters was discussed, and gridding dimension and gridding dimension distance under the common fault state of rolling bearing were obtained. A kind of new method was presented. This method is a kind of self-adaptive dynamic adjustor method by use of fractal dimension to automatically adjust the value of the filter fuzzy control parameter, it effectively improves the noise filter effect. Aimed at five kinds of state of armored vehicle rolling bearing such as normal state, outer race crack, inner race crack, rolling body damage and test signal, the vibration signals under these five states were analyzed and diagnosed. The results showed that this method is preferable.
出处 《火炮发射与控制学报》 北大核心 2009年第4期66-70,共5页 Journal of Gun Launch & Control
基金 山西省自然科学基金资助(2006011067)
关键词 应用统计数学 分形滤波 模糊控制 故障诊断 applied statistical mathematics fractal filtering fuzzy control fault diagnosis
  • 相关文献

参考文献2

二级参考文献7

  • 1Hartman O L, et al. Compendium of Soybean Disease (4^th Edition). Published by the American Phytopathological Society. 1999.
  • 2Rupe-JC,et al. Plant-Disease, 1999,83:6,582-586.
  • 3Farr D F et al. Fungi on Plants and Products in the United States. 1989 APS Press.
  • 4CABI and EPPO. Quarantine pests for Europe (2^nd edition). 1997.
  • 5刘增良,模糊技术与应用选编,1997年
  • 6李士勇,模糊控制、神经控制和智能控制制论,1996年
  • 7吴敏金,分形信息导论,1994年

共引文献8

同被引文献26

  • 1胡桂龙,徐刚,柳香雅.基于DSP的瞬态冲击信号采集的研究[J].计算机测量与控制,2006,14(2):272-273. 被引量:5
  • 2任丽娟,姚竹亭.分形网格维数在齿轮故障诊断中的应用[J].机械工程与自动化,2006(6):55-57. 被引量:5
  • 3李军利,卢喜山,徐向东,廉自生.采煤机远程监测与故障诊断系统研究[J].煤矿机械,2007,28(5):174-176. 被引量:24
  • 4张赛飞,刘勇,高跃飞.分形理论在齿轮箱故障诊断中的应用研究[J].车辆与动力技术,2007(2):57-60. 被引量:3
  • 5柳晓伟,吴金强.小波分析在齿轮箱故障诊断中的应用[J].机械工程与自动化,2007(4):93-95. 被引量:3
  • 6SU Wen-sheng, WANG Feng-tao, ZHU Hong, et al. Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement[J]. Mechanical Systems and Signal Processing, 2010, 24(5): 1458-1472.
  • 7XU Zeng-bing, XUAN Jian-ping, SHI Tie-lin, et al. Application of a modified fuzzy ARTMAP with feature-weight learning for the fault diagnosis of bearing [J]. Expert Systems with Applications, 2009, 36 (6) : 9961-9968.
  • 8LEI Ya-guo, HE Zheng-jia, ZI Yan-yang. EEMD method and WNN for fault diagnosis of locomotive roller bearings[J]. Expert Systems with Applications, 2011, 38(6): 7334-7341.
  • 9LEI Ya-guo, LIN Jing, HE Zheng-jia, et al. Application of an improved kurtogram method for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2010, 25(5): 1738- 1749.
  • 10SOARES S G, ROCHA A F, et al. Embedding a Neural Network into WSN furniture [C]//Proceedings of 10th International Conference on Hybrid Intelligent Systems. Piscataway: IEEE Press, 2010: 219-222.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部