摘要
特征选择是机器学习和模式识别领域的一个关键问题。文中详细分析研究一类基于K近邻分类间隔的特征选择算法,并着重讨论当K>1时,特征选择的评价准则和搜索策略的设计,同时在多个数据集上验证其性能。
Feature selection is one of key problems in machine learning and pattern recognition.In this paper,a type of feature selection methods based on Margin of K-nearest neighbors is discussed.Furthermore,the feature selection evaluation criterion and search strategy is introduced when the value of k is more than 1.Meanwhile,the experimental results on different data sets are presented.
出处
《南京邮电大学学报(自然科学版)》
2009年第6期68-74,共7页
Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金
江苏省高校自然科学基金(08KJB520008)
南京邮电大学人才引进启动基金(NY207137
NY207148)资助项目
关键词
特征选择
K近邻
分类间隔
feature selection K-nearest neighbors classification margin