摘要
This study deals with the nonlinear dynamic response of deep-sea risers subjected to parametric excitation at the top of a platform. As offshore oil and gas exploration is pushed into deep waters, difficulties encountered in deep-sea riser design may be attributed to the existence of parametric instability regarding platform heave motions. Parametric resonance in risers can cause serious damage which might bring disastrous accidents such as environment pollution, property losses and even fatalities. Therefore, the paranletric instability analysis should attract more attention during the design process of deep-sea risers. In this work, an equation of motion for a deep-sea riser is derived firstly. The motion equation is analyzed by the Floquet theory which allows the determination of both system response and stability properties. The unstable regions in which parametric resonance easily occurs can be determined. The effects of damping on parametric instability are also investigated, and the stability maps are presented. The results demonstrate that the available damping is vital in suppressing the instability regions. The suggestions for reduction of instability regions are proposed in deep-sea riser design.
This study deals with the nonlinear dynamic response of deep-sea risers subjected to parametric excitation at the top of a platform. As offshore oil and gas exploration is pushed into deep waters, difficulties encountered in deep-sea riser design may be attributed to the existence of parametric instability regarding platform heave motions. Parametric resonance in risers can cause serious damage which might bring disastrous accidents such as environment pollution, property losses and even fatalities. Therefore, the paranletric instability analysis should attract more attention during the design process of deep-sea risers. In this work, an equation of motion for a deep-sea riser is derived firstly. The motion equation is analyzed by the Floquet theory which allows the determination of both system response and stability properties. The unstable regions in which parametric resonance easily occurs can be determined. The effects of damping on parametric instability are also investigated, and the stability maps are presented. The results demonstrate that the available damping is vital in suppressing the instability regions. The suggestions for reduction of instability regions are proposed in deep-sea riser design.
基金
supported by the National Key Natural Science Foundation of China(Grant No.50739004)
the Research Fund for the Doctoral Program of Higher Education(Grant No.20070248104)