期刊文献+

水位梯度对小叶章湿地土壤微生物活性的影响 被引量:29

Influence of Water Level Gradient on Marsh Soil Microbial Activity of Calamagrostis angustifolia
原文传递
导出
摘要 通过3a野外控制试验,研究了不同水位梯度(-10~30cm)条件下,小叶章湿地植物地上生物量和0~15cm以及15~50cm土壤总有机碳(TOC)、微生物量碳(MBC)、基础呼吸(BR)、微生物商(Cmic/Corg)、代谢商(qCO2)的变化规律.结果表明,不同水位条件下植物地上生物量差异显著(P〈0.05),积水水位10cm的植物地上生物量最高,且积水水位0~20cm保持较高的生产力;积水水位变化对土壤TOC、MBC、BR、Cmic/Corg、qCO2影响显著(P〈0.05).土壤TOC和BR对积水水位变化的响应趋势一致,0~1.5cm土壤TOC和BR在零积水水位最高;15~50cm土壤TOC和BR随着积水水位的升高而降低,与土壤MBC和Cmic/Corg的变化趋势相同,其中MBC变化最为明显;而qCO2随着积水水位的增加而增大.随着积水水位的增加,土壤微生物群落发生改变和土壤微生物活性降低,其中积水水位30cm的土壤微生物活性最低,对有机碳的累积与分解过程产生影响. Plant aboveground biomass, total organic carbon ( TOC ) , microbial biomass carbon ( MBC ) , basal respiration (BR) , microbial quotient( Cmic/Corg) and metabolic quotient( qCO2 ) in 0-15 em and 15-50 cm marsh soil of Calamagrostis angustifolia under different water levels were investigated with controlled experiment. The result showed that water level exerted significant effect on plant biomass, which was the highest under 10 cm waterlogged level and of higher productivity under 0-20 cm waterlogged level. TOC, MBC, BR, Cmic/Corg and qCO2 differed significantly under different water levels. BR and TOC responded to different waterlogged levels in the same way. BR and TOC of 0-15 cm marsh soil were the highest under 0 cm waterlogged level, however, BR and TOC of 15-50 cm marsh soil decreased respectively with increasing water, which was corresponding with soil MBC and Cmic/Corg, and qCO2 increased with increasing water. As a result, microbial community is altered and microbial activity is decreasing by increasing waterlogged level,and microbial activity is the lowest under 30 cm waterlogged level, which affects organic carbon accumulation and decomposition.
出处 《环境科学》 EI CAS CSCD 北大核心 2010年第2期444-449,共6页 Environmental Science
基金 国家重点基础研究发展规划(973)项目(2009CB421103) 国家自然科学基金项目(40771189) 中国科学院知识创新工程重要方向项目(KZCX2-YW-309)
关键词 水位梯度 沼泽湿地 微生物活性 微生物量碳 代谢商 water gradient marsh microbial activity microbial biomass carbon (MBC) metabolic quotient ( qCO2 )
  • 相关文献

参考文献28

  • 1Reddy K R, Patrick W H. Wetland soils--opportunities and challenges[J]. Soil Sci Soc Am J,1993,57: 1145-1147.
  • 2孟宪民.湿地与全球环境变化[J].地理科学,1999,19(5):385-391. 被引量:120
  • 3Harris R. Effect of Water Potential on Microbial Growth and Activity in Soils in Water Potential Relations in Soil Microbiology [ M ]. Madison, WI: Soil Science Society of America Journal, 1981. 23-96.
  • 4Kempf B, Bremer E. Uptake and synthesis of compatible solutes as microbial stress response to high-osmolality environments [ J]. Archives of Microbiology, 1998,170:319-330.
  • 5Doran J W, Coleman D C, Bezdicek D F, et al. Defining soil quality for a sustainable environment soil society of America publication [ J ]. Soil Biol Biochem, 1994,26:353-357.
  • 6Abbott L K, Murphy D V. Soil Biological Fertility [ M ].Netherlands :Kluwer Academic Publisher, 2003.
  • 7Hofman J, Bezchlebova J, Du L, et al. Novel approach to monitoring of the soil biological quality [ J ]. Environment International, 2003,28 ( 8 ) : 771-778.
  • 8汲玉河.三江平原湿地典型植物群落物种多样性变化特征[D].长春:中国科学院东北地理与农业生态研究所,2004.
  • 9赵先丽,程海涛,吕国红,贾庆宇.土壤微生物生物量研究进展[J].气象与环境学报,2006,22(4):68-72. 被引量:80
  • 10Srivastava S C, Singh J S. Microbial C, N and in dry tropical forest soils:effects of alternate land-use and nutrient flux[ J]. Soil Biol Biochem,1991,23(2) :117-124.

二级参考文献70

共引文献1027

同被引文献579

引证文献29

二级引证文献269

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部