期刊文献+

基于稀疏分解的可伸缩图像编码 被引量:5

Scalable Image Coding Based on Sparse Decomposition
下载PDF
导出
摘要 图像编码技术的新的突破可寄希望于信号表示的深刻变革.采用基于冗余原子库的快速匹配追踪算法对图像进行稀疏分解,在分析和总结原子空间位置分布规律的基础上,提出与之相适应的块划分编码方法,节约了用于表示原子参数和投影系数的比特数.实验结果表明,本文编码器在计算复杂度、编码效率和伸缩性能等方面都优于当前同类型编码器,特别是在前两方面,其优势十分明显.比如对512×512测试图像,编码率为0.5bpp时本文编码器的平均PSNR增益达1.73dB.特别地,凭借原子库的几何特性,该编码器提供了较传统方法更灵活的伸缩性,允许通过简单的参数变换来获得任意分辨率大小的重建图像. New breakthroughs in image coding may rely on deep changes in the signal representation.The fast matching pursuit(MP) algorithm is first employed to get the sparse image decomposition over a redundant dictionary.The distribution of the spatial position of selected atoms is studied and a novel block partitioning coding method is then proposed.The bit savings in representations of atom parameters and projection coefficients are obtained.Experimental results show that the new coding scheme has striking advantages over the latest MP coder in computational complexity,coding efficiency as well as scalability.For instance,for 512×512 test images an average PSNR gain of 1.73dB is achieved at 0.5bpp.Notably,thanks to the geometrical structure of the dictionary,the new coder provides attractive adaptability features which allow the codestream to be easily and efficiently decoded at any spatial resolution.
作者 甘涛 何艳敏
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第1期156-160,共5页 Acta Electronica Sinica
关键词 冗余原子库 稀疏分解 伸缩性 redundant dictionary sparse decomposition scalability
  • 相关文献

参考文献9

  • 1MALLAT S,ZHANG Z. Matching pursuits with time-frequency dictionaries[J], IEEE Transactions on Signal Processing, 1993, 41(12) :3397 - 3415.
  • 2FIGUERAS I VENTURA R M, VANDERGHEYNST P, et al. Low-rate and flexible image coding with redundant representations[J]. IEEE Trans Image Process,2006,15(3) :726 - 739.
  • 3RAHMOUNE A, VANDERGHEYNST P, et al. Flexible motion-adaptive video coding with redundant expansions[ J]. IEEE Tram Circuits Syst for Video Technol, 2006, 16 ( 2 ) : 178 - 190.
  • 4FROSSARD P, VANDERGHEYNST P, et al. A posteriori quantization of progressive nlatching pursuit streams[J]. IEEE Trans. Signal Process,2004,52(4) :525 - 535.
  • 5甘涛,何艳敏,朱维乐.基于互相关估计的快速图像逼近算法[J].电子学报,2008,36(5):1019-1023. 被引量:1
  • 6GAN T,HE Y M, et al.Fast M-term pursuit for sparse image representation[ J ]. IEEE Signal Processing Letters, 2008, 15: 116- 119.
  • 7NEFF R,ZAKHOR A.Modulus quantization for matching-pursuit video coding[J]. IEEE Tram Circuits Syst Video Technol, 2000,10(6) :895 - 912.
  • 8NEFF R,ZAKHO A. Very low bit-rote video coding based on matching pursuits [J]. IEEE Trans Circuits Syst. Video Technol, 1997,17(1) : 158 - 171.
  • 9PEARLMAN W, ISLAM A, et al. Efficient, low-complexity image coding with a set-partitioning embedded block coder [J]. IEEE Trans Circuits and Syst for Video Technol,2004, 14(11) : 1219 - 1235.

二级参考文献8

  • 1Mallat S,Zhang Z. Matching pursuits with lime-frequency dictionaries[J]. IEEE, Transactions on Signal Processing, 1993,41 (12) :3397 - 3415.
  • 2Figueras i Ventura R M. Sparse image approximation with application to flexible image coding [ D ]. Switzerland: EPFL, 2005.
  • 3Rahmoune A. Image and video representation and scalable coding using redundant dictionaries[ D]. Switzerland: EPFL, 2005.
  • 4Vandergheynst P, Frossard P. Efficient image representation by anisotropic refinement in matching pursuit [ A ]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing [ C]. Salt Lake City: IEEE, 2001. 1757 - 1760.
  • 5Figueras i Ventura R M, Vandergheynst P, et al. Low-rate and flexible image coding with redundant representations [ J ]. Transaction on Image Process, 2006, 15(3):726- 739.
  • 6Taubman D, Marcellin M. JPEG2000: Image Compression Fundamentals, Standards and Practice [ M ]. Boston: Kluwer Academic Publishers, 2001.
  • 7邹红星,周小波,李衍达.时频分析:回溯与前瞻[J].电子学报,2000,28(9):78-84. 被引量:135
  • 8廖斌,许刚,王裕国.二维匹配跟踪自适应图像编码[J].计算机辅助设计与图形学学报,2003,15(9):1084-1090. 被引量:3

同被引文献73

  • 1尹忠科,邵君,Pierre Vandergheynst.利用FFT实现基于MP的信号稀疏分解[J].电子与信息学报,2006,28(4):614-618. 被引量:25
  • 2Eenel H K,Sanker B.Multiresolution Face Recognition[J].Image and Vision Computing,2005,23(5):469-477.
  • 3Liu C C,Dai D Q,Yan H.Local Discriminant Wavelet Packet Coordinates for Face Recognition[J].Journal of Machine Learning Research,2007(8):1165-1195.
  • 4Zhang T.Multiscale Facial Structure Representation for Face Recognition under Varying Illumination[J].Pattern Recogni-tion,2009,42(2):251-258.
  • 5Elad M,Aharon M.Image Denoising via Sparse and Redun-dant Representations over Learned Dictionaries[J].IEEE Transactions on Image Processing,2006,15(12):3736-3745.
  • 6Wright J,Yang A,Ganesh A.Robust Face Recognition via Sparse Representation[J].IEEE Transactions on Pattern A-nalysis and Machine Intelligence,2009,31(2):210-227.
  • 7Donoho D L.For Most Large Underdetermined Systems of Linear Equations the Minimal Norm Solution Is also the Spa-rest Solution[J].Communications on Pure and Applied Mathematics,2006,59(6):797-829.
  • 8王建英,尹忠科,张春梅.信号与图像的稀疏分解及初步应用.成都:西南交通大学出版社,2006 :94-100.
  • 9刘浩,吴季,等.综合孔径微波辐射计信道误差分析与标定[J].2005,33(3):402-406.
  • 10Kaipio J, Somesalo E. Statistical and Computational Inverse Problems [ M]. Berlin: Springer, 2004.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部