期刊文献+

图形处理器在大规模力学问题计算中的应用进展 被引量:2

ADVANCES IN GRAPHICS PROCESSING UNITS' APPLICATIONS TO THE COMPUTATION OF LARGE-SCALE MECHANICAL PROBLEMS
下载PDF
导出
摘要 现代图形处理器(graphics processing units,GPU)具有较强的并行数值运算功能.该文简单介绍了GPU的硬件结构,基于GPU通用计算的数据结构和实现方法,以及用于编写片元程序的OpenGL着色语言.介绍了应用GPU计算大规模力学问题的研究进展.简要介绍了以下内容:应用GPU模拟自然界的流体现象,其实质是使用有限差分法求解Navier-Stokes方程;应用GPU实现有限元法计算,使用基于GPU的共轭梯度法求解有限元方程组;应用GPU实现分子动力学计算,用GPU计算原子间短程作用力,并生成邻近原子列表;应用GPU实现量子力学Monte Carlo计算;应用GPU实现n个物体的引力相互作用,用GPU纹理存储n个物体的位置、质量、速度和加速度等.对基于图象处理器和中央处理器的计算作比较,已完成了以下基于GPU的计算:实现求解线性方程组的高斯消元法和共轭梯度法,并应用于大规模的有限元计算;加速无网格法计算;加速线性和非线性分子结构力学方法计算;用于计算分析碳纳米管的力学性能.指出GPU在大规模力学计算中的研究方向. Modern graphics processing units (GPUs) are powerful parallel processors. The hardware architectures of modern graphics processing units, the data structures and implementations for general purpose GPU (GPGPU) computations, and the OpenGL shading language which is used to compile fragment programs are briefly described. The GPUs' applications for solving large scale mechanical problems are presented, with emphasis laid on the following aspects. GPUs are used to simulate natural fluid phenomena, and Navier-Stokes equations are solved by the finite difference method; GPUs are used to implement the finite element method computations, and the finite element method equations are solved by the conjugate gradient method on GPUs; GPUs are used to implement molecular dynamics computations, and short range pair forces are computed and the atom neighbor lists are built by GPUs; Quantum Monte Carlo simulations are computed on GPUs; GPUs are used to implement gravitational N-body simulations, and GPU textures are used to store the N bodies' positions, masses, velocities, and accelerations. The computations on GPUs and on central processing units (CPUs) are compared. The authors have performed the following computations on GPUs. The Gauss elimination method and the conjugate gradient method for solving linear equations, which are applied to large scale finite element method computations; Accelerations for the meshless method; Accelerations for linear and non- linear molecular structural mechanics approach, which are used to analyze the carbon nanotubes' mechanical properties. Further research trend of large scale mechanical computations on GPUs are suggested at the end of paper.
出处 《力学进展》 EI CSCD 北大核心 2010年第1期57-63,共7页 Advances in Mechanics
关键词 图形处理器 大规模力学问题计算 有限差分法 有限元法 分子动力学 graphics processing units, computations on large scale mechanical problems, finite difference method, finite element method, molecular dynamics
  • 相关文献

参考文献29

  • 1Qwens J D, Luebke D, Govindaraju N, et al. A survey of general-purpose computation on graphics hardware. In: Eurographics 2005, State of the Art Reports, August 2005. 21-51.
  • 2Juba D, Varshney A. Parallel, stochastic measurement of molecular surface area. Journal of Molecular graphics and Modeling, 2008, 27(1): 82-87.
  • 3Bohn C A. Kohonon feature mapping through graphics hardware. In: Proceedings of the Joint Conference on Information Sciences. Research Triangle Park, North Carolina, USA, 1998. 2:64-67.
  • 4Hopf M, Ertl T. Accelerating 3D convolution using graphics hardware. IEEE Visulization '99. San Francisco, Cal-ifornia, USA, 1999. 471-474.
  • 5Hopf M, Ertl T. Hardware based wavelet transformations. In: Proceedings of Vision, Modelling, and Visualization. Germany, 1999. 317-328.
  • 6Thompson C J, Hahn S, Oskin M. Using modern graphics architectures for general-purpose computing: A framework and analysis. In: Proceedings of the 35th Annual ACM/IEEE International Symposium on Microarchitecture. Istanbul, Turkey, 2002. 306-317.
  • 7Harris M J, Coombe G, Scheuermann T, et al. Physically- based visual simulation on graphics hardware. In: Proceedings of the ACM Siggraph/Eurographics conference on Graphics hardware, Saarbrucken, Germany, 2002. 109-118.
  • 8Kim T, Lin M C. Visual simulation of ice crystal growth. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation. San Diego, California, USA, 2003. 86-97.
  • 9Li W, Wei X, Kaufman A. Implementing lattice Boltzmann computation on graphics hardware. The Visual Computer, 2003, 19:444-456.
  • 10Li W, Fan Z, Wei X, et al. GPU-based flow simulation with complex boundaries. GPU Gems 2. Addison Wesley, 2005. 747-764.

二级参考文献20

  • 1吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:225
  • 2吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 3柳有权,刘学慧,吴恩华.基于GPU带有复杂边界的三维实时流体模拟[J].软件学报,2006,17(3):568-576. 被引量:54
  • 4邓劲.图形处理器上的快速傅里叶变换[J].现代电子技术,2007,30(10):151-154. 被引量:7
  • 5Qwens J D, Luebke D, Govindaraju N, et al. A Survey of General-purpose Computation on Graphics Hardware[C]//Proc. of Eurographics'05. Grenoble, France: [s. n.], 2005.
  • 6Kruger J, Westermann R. Linear Algebra Operators for GPU Implementation of Numerical Algorithms[J]. ACM Transactions on Graphics, 2003, 22(3): 908-916.
  • 7Bolz J, Farmar I, Grinspun E, et al. Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid[J]. ACM Transactions on Graphics, 2003, 22(3): 917-924.
  • 8RostRJ.OpenGL着色语言[M].天宏工作室,译.北京:人民邮电出版社,2006.
  • 9Thomas Jansen,Bartosz von Rymon Lipinski,Nils Hanssen,et al.Fourier Volume Rendering on the GPU Using a Split Stream FFT[J].VMV 2004:395-403.
  • 10Thomas Jansen,Bartosz von Rymon-Lipinski,Nils Hanssen,Erwin Keeve,Fourier Volume Rendering on the GPU Using a Split Stream FFT[EB].http://www.gpgpu.org.

共引文献66

同被引文献20

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部