期刊文献+

基于全方位计算机视觉的ATM机智能监控 被引量:2

ATM intelligent surveillance based on ODVS
下载PDF
导出
摘要 探讨了利用全方位视觉传感器(ODVS)以及计算机视觉技术来实现对自动取款机(ATM)的视频智能监控,采用ODVS来获取整个ATM机周围的全景视频图像,通过透视算法将全景视频图像展开成若干个重点监控领域;为了提高检索效率、减少存储和传输信息量,提出了通过基于高斯肤色模型的人脸检测算法获取ATM使用者的人脸图像并将时间地点等信息进行合并,得到一幅包含使用ATM时间、地点和人物图像;为了提高ATM的使用安全性,通过基于卡尔曼滤波的人脸跟踪和行为语义规则判定等手段来检测和分析ATM设备周围环境中的窥视行为.与现有的ATM视频监控技术相比,所提出的监控方法具有检测范围广、智能化水平高、存储检索效率高等优点,实现窥视行为检测算法具有较高的鲁棒性和检测精度. This paper discusses a new intelligently monitoring system for the automatic teller machine (ATM) by using an omni-directional vision sensor (ODVS) and the computer vision technology. It uses ODVS to acquire the omni-directional image and perspective algorithm to unwrap the omni-directional image into several separated key surveillance sections. To improve the search efficiency and minimize the storage and data transmission, this paper presents a face detection algorithm based on Gaussian skin-color model to acquire the ATM users' face image and combines it with the time and location information of certain activities, which includes the time and the location and the person who is using ATM. To improve the safety of using ATM, this paper provides some means which based on the Kalman filter of face tracking and behavior semantic rules judgment to detect and analyze the peeping activities in the ATM surrounding area. Comparing with the existing ATM surveillance technology, the surveillance method proposed in this paper has the advantages of detecting widely range, high-level intelligence, high-efficiency storage and high-efficiency searching. The peeping behavior detecting algorithm has high robustness and detection precision.
出处 《浙江工业大学学报》 CAS 北大核心 2010年第1期26-32,共7页 Journal of Zhejiang University of Technology
基金 国家自然科学基金资助项目(60673177) 浙江省科技厅重大科技资助项目(2006C11202)
关键词 全方位视觉 ATM智能监控 人脸检测 肤色模型 卡尔曼滤波 omni-directional vision ATM intelligent surveillance face detection skin-color model kalman filter
  • 相关文献

参考文献10

  • 1汤一平,叶永杰,朱艺华,顾校凯.智能全方位视觉传感器及其应用研究[J].传感技术学报,2007,20(6):1316-1320. 被引量:49
  • 2YAMAZAWA K, YAGI Y. Omnidirectional imaging with hyperboloidal proiection[C]// Proceedings of International Conference on Intelligent Robots and Systems. Japan: Yokohama, 1993:1029-1034.
  • 3BABAGUCHI N, FUJIMOTO Y, YAMAZAWA K, et al. A system for visualization and summarization of omnidirectional surveillance video[C]// Proceedings of the 8th International WorkShop on Multimedia Information System. Tempe:AZ, 2002,18-27.
  • 4梁路宏,艾海舟,徐光祐,张钹.人脸检测研究综述[J].计算机学报,2002,25(5):449-458. 被引量:355
  • 5陈锻生,刘政凯.肤色检测技术综述[J].计算机学报,2006,29(2):194-207. 被引量:118
  • 6SHAMIK, GANG Q, SAKTI. Segmentation and histogram generation using the HSV color space for image retrieval[C]// IEEE 2002 International Conference on Image Processing. New York: Berlin-Heidelberg,2002 : 589-592.
  • 7HSU R L, MOTTALEB M A, JAIN A K. Face detection in color image [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(5) : 696-706.
  • 8CHAI D, BOUZERDOUM A. A Bayesian app roach to skin color classification in YCbCr color space [C]// Proceedings IEEE Region Ten Conference. Japan: Kuala Lumpur,2000,421-424.
  • 9YANG M H, AHUJA N, Gaussian mixture model for human skin color and its application in image and video databases [C]//Proceedings of SPIE: Conference on Storage and Retrieval for Image and Video Databases. San Jose: CA, 1999, 3656:458-466.
  • 10汤一平,顾校凯,金顺敬,等.基于全方位视觉传感器的智能安保装置:中国,200510062382[P].2006-08-02.

二级参考文献191

  • 1潘志庚,邹鹏程,梁荣华.基于特征人脸和肤色统计的人脸检测[J].系统仿真学报,2004,16(6):1346-1349. 被引量:14
  • 2杨继华,严国萍.基于嵌入式Linux与S3C2410平台的视频采集[J].单片机与嵌入式系统应用,2004,4(11):69-71. 被引量:29
  • 3张晓华,山世光,曹波,高文,周德龙,赵德斌.CAS-PEAL大规模中国人脸图像数据库及其基本评测介绍[J].计算机辅助设计与图形学学报,2005,17(1):9-17. 被引量:40
  • 4左文明.连通区域提取算法研究[J].计算机应用与软件,2006,23(1):97-98. 被引量:31
  • 5Finlayson G.D.,Hordley S.D.,Hubel P.M..Colour by correllation:A simple,unifying framework for colour constancy.IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(11):12097~1221.
  • 6Phung S.L.,Bouzerdoum A.,Chai D..Skin segmentation using color pixel classification:Analysis and comparison.IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(1):149~154.
  • 7Storring M..Computer vision and human skin colour[Ph.D.dissertation].Computer Vision and Media Technology Laboratory,Aalborg University,Denmark,2004,http://www.cvmt.dk/~mst.
  • 8Yang M.H.,Kriegman D.,Ahuja N..Detecting faces in images:A survey.IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(1):34~58.
  • 9Zhao W.,Chellapa R.,Philips P.J.,Rosenfeld A..Face recognition:Literature survey.ACM Computing Survey,2003,35(4):399~458.
  • 10Oliver N.,Pentland A.,Berard F..LAFTER:A real-time face and lips tracker with facial expression recognition.Pattern Recognition,2000,33:1369~1382.

共引文献510

同被引文献19

  • 1张冬泉.ATM业务及故障监控系统的研究与开发[J].计算机工程,2006,32(21):226-228. 被引量:1
  • 2Subudhi B N,Nanda P K,Ghosh A. A change information based fast algorithm for video object detection and tracking[J].IEEE Transactions on Circuits and Systems for Video Technology,2011,(07):993-1004.
  • 3Jazayeri A,Hongyuan Cai,Jiang Yu Zheng. Vehicle detection and tracking in car video based on motion model[J].IEEE Transactions on Intelligent Transportation Systems,2011,(02):583-595.
  • 4Yao Fenghui,Sekmen A,Malkani M J. Multiple moving target detection.tracking,and recognition from a moving observer[A].New York,2008.978-983.
  • 5Rowe D,Reid I,Gonzalez J. Unconstrained multiplepeople tracking[A].Beilin:Springer-Verlag,2006.505-514.
  • 6Blanding W R,Willett P K,Bar-Shalom Y. Multiple target tracking using maximum likelihood probabilistic data association[A].Big Sky,2007.1-12.
  • 7Pan P,Schonfeld D. Dynamic proposal variance and optimal particle allocation in particle filtering for video tracking[J].IEEE Transactions on Circuits and Systems for Video Technology,2008,(09):1268-1279.
  • 8Angelova D,Mihaylova L. Extended object tracking using monte carlo methods[J].IEEE Transactions on Signal Processing,2008,(02):825-832.doi:10.1109/TSP.2007.907851.
  • 9郑可飚,黄文清,张佐理,李艳芳.运动目标跟踪系统的遮挡问题处理[J].计算机工程与设计,2009,30(11):2816-2818. 被引量:6
  • 10葛云,章东.活体细胞图像斑点的自动提取和跟踪方法[J].东南大学学报(自然科学版),2009,39(3):464-467. 被引量:4

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部