期刊文献+

面向转子故障诊断的核局部边界Fisher判别方法 被引量:4

Method of kernel local-margin fisher discriminant to rotor fault diagnosis
下载PDF
导出
摘要 提出一种基于核的局部边界Fisher判别(KLMFD)算法用核函数将故障特征数据映射到高维核空间,以每点与所有局部邻域点中最远同类数据点和最近异类数据点构成的点对来计算类内散度和类间散度,构建边界局部核Fisher判别函数,求出最优故障识别向量,然后利用该向量对测试特征数据进行故障诊断。转子故障诊断实验表明,对于多传感器振动特征融合信号,KMLFD算法的故障诊断效果最好,当选取合适参数时能完全识别故障类型。 In order to better identify the fault of rotor system, one new method based on kernel local-margin fisher discriminant (KLMFD) is proposed.In this methd, fualt feature data are mapped to high-dimensional space by kernel function, computed with-class scatter and between-class scatte based on the farthest congeneric data point and the recent heterogeneous data point of each point in all the local neighborhood, constructed kernel local magin fisher discriminant function, found optimal fault diagnosis vector. Then fault of new testing data are identified by this vector.The experiment showed, KLMFD algorithm had best effect in comparison to other manifold learning algorithm to the rotor fault diagnosis, and can fully identify fault type when selecting the appropriate parameters.
出处 《电子测量与仪器学报》 CSCD 2010年第1期96-100,共5页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(编号:50875082)资助项目
关键词 核映射 局部边界 FISHER判别 故障诊断 kernel mapping local margin fisher discriminant fault diagnosis
  • 相关文献

参考文献10

  • 1SEUNG H S, DANIEL D L. The manifold ways of perception[J]. Science(S0036-8075), 2000, 290(5500): 2268-2269.
  • 2ROWELS S, SAUL L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science(S0036- 8075), 2000, 290(5500): 2323-2326.
  • 3BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation. 2003, 15(6): 1373-1396.
  • 4ZHANG ZH Y, ZHA H Y. Principal manioflds and nonlinear dimension reduction via Tangent Space Alignmnet[J]. SIAM Journal on Scientific Computing, 2005, 26(1): 313-338.
  • 5OLGA K, OLEG O. Supervised locally linear embedding algorithm for pattern recognition[J]. Pattern Recognition and Image Analysis. 2003, 2652(9): 386-394.
  • 6BELKIN M, NIYOGI E Semi-supervised learning on riemannian manifolds[J]. Maching Leafing, 2004.56(1): 209-239.
  • 7HE X F, NIYOGI P. Locality preserving projections[C]. Advances in Neural Information Processing Systems 16. MIT Press, cambrifge, MA, 2004.
  • 8MASASHI S. Local fisher discriminant analysis for aupervised dimensionality reduction[C]. Proceedings of 23rd International Conference on Machine Learning, 2006: 905-912.
  • 9MASASHI S. Dimensionality reduction of multimodal labeled data by local fisher discriminant Analysis[J]. Machine Learning Research, 2007, 8(5): 1027-1061.
  • 10胡学发,王姝,王福利,何大阔.基于子时段递推MFDA的水压机故障诊断方法[J].仪器仪表学报,2009,30(2):247-251. 被引量:5

二级参考文献5

共引文献4

同被引文献54

引证文献4

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部