期刊文献+

多目标进化算法中多样性策略的研究 被引量:2

Diversity Strategies on Multiobjective Evolutionary Algorithms
下载PDF
导出
摘要 进化多目标优化中由于进化算子固有的随机误差以及进化过程中选择压力和选择噪音的影响使得进化群体容易丧失多样性,而保持进化群体的多样性不仅有利于进化群体搜索,而且也是多目标优化的重要目标。对多目标进化算法的多样性策略进行了分类,在统一的框架下描述了各种策略的机制,并分析了各自的特性。随后,分析并比较了多样性保持算子的复杂度。最后,证明了一般意义下多目标进化算法的收敛性,指出在设计新的多样性策略中需要保证进化世代间的单调性,避免出现退化现象。 The intrinsic random errors on the evolutionary operators and the pressure of selection and the noise of selec- tion in the evolutionary process easily make the loss of diversity on the evolutionary population. But the maintenance of diversity on the population is very important because it is not only benificial to the search process but also becomes the essential objective in multiobjective optimization. With the unified framework, this paper first classifiesd the diversity strategy on the MOEAs and described the principles and mechanisms on different types of diversity strategies and ana- lyzed their characteristics. Then this paper analyzed the complexity of these diversity operators. At last, this paper proved the convergence of MOEAs in the general sense and pointed out that it is necessary to keep the monotonicity in the evolutionary population and avoid the degradation of population as the design of new diversity strategy.
出处 《计算机科学》 CSCD 北大核心 2010年第2期175-179,共5页 Computer Science
基金 高等学校博士点基金项目(No.20070486081) 湖北省杰出青年人才基金(No.2005ABB017)资助
关键词 多目标进化算法 多样性策略 算子复杂度 收敛性 Multiobjective evolutionary algorithms,Diversity strategies,Complexity,Convergence
  • 相关文献

参考文献9

  • 1Horn J, Nafpliotis N,Goldberg D E. A niched Pareto genetic algorithm for multiobjeetive optimization[C]//IEEE World Congress on Computation. Piseataway, NJ, 1994.
  • 2Fonseca C M, Fleming P J. Genetic algorithms for Multiobjeetive optimization:Formulation, discussion and generalization[C] ff Proceedings of the 5th International Conference on Genetic Algorithms. San Marco, California, 1998.
  • 3Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms[R]. Dept. Mechanical Engineering, Kanput, India, 1993.
  • 4Cui X X, Li M, Fang T. Study of Population Diversity of Multiobjective Evolutionary Algorithm Based on Immune and Entropy Principles[C]//Proceedings of the 2001 International Congress on Evolutionary Computation. IEEE Neural Networks Council, Seoul, Korea, 2001.
  • 5Deb K, Agrawal S,Pratap A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NS- GA II[C]//Parallel Problem Solving from Nature(PPSN VI). Berlin, 2000.
  • 6Knowles J D,Corne D W. The Pareto archived evolution strategy:A new baseline algorithm for Pareto multiobjective optimization[C]//Congress on Evolutionary Computation (CEC99). Piscaraway, NJ, 1999.
  • 7Zitzler E, Thiele L. Multiobjective evolutionary algorithms : A comparative case study and strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999,3 : 257-271.
  • 8Laumanns M, Zitzler E, Thiele L. On the effects of archiving, elitism,and density based selection in evolutionary multi-objective optimization[C] // Evolutionary Multi-Criterion Optimization (EMO 2001). 2001.
  • 9Zitzler E, I.aumanns M, Thiele L. Improving the Strength Pareto Evolutionary Algorithm for Muhiobjective Optimization[C]// EUROGEN 2001, Evolutionary Methods for Design, Optimization and Contorl with Applications to Industrial Problems. Septermber 2001.

同被引文献10

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部