期刊文献+

汉语实体关系模式的自动获取研究 被引量:3

Study of Obtaining Chinese Entity Relation Pattern Automatically
下载PDF
导出
摘要 中文信息抽取系统中实体关系模式的自动获取对于整个系统具有重要意义。在bootstrap方法的基础上,根据汉语在形式表达上的多样性特点,使用统计学习技术来自动获取新模式。实验表明,该方法在人工干预很少的情况下,能够快速查找新模式,且新模式的获取不受应用领域限制。因此该方法对于提高信息抽取系统的性能是有效的。 Obtaining Chinese entity relation pattern automatically is very important for entire information extraction system. Based on method of bootstrap and features that Chinese can express same meaning by many forms,using tech- nology of statistical learning to obtain new pattern automatically. Experiment shows the method can find new pattern rapidly and need very small manual work, the process can't be limited by extract region. So the method is effective for promoting the function of information extraction system.
出处 《计算机科学》 CSCD 北大核心 2010年第2期183-185,共3页 Computer Science
基金 国家自然科学基金项目(项目编号70803048)资助
关键词 信息抽取 实体关系 模式匹配 相似度 Information extraction,Entity relation,Pattern match,Similarity
  • 相关文献

参考文献12

  • 1Huang Ruihong EE, Sun Le, Feng Yuanyong. Study of Kernel- Based Methods for Chinese Relation Extraction[J]. AIRS, 2008.- 598 604.
  • 2Zhang M, Zhang J, Su J, et al. A Composite Kernel to Extract Relations between Entities with both Flat and Structured Features[C]//ACL-2006. Sydney, Australia, 2006 : 825-832.
  • 3Zhou G D, Zhang M,Ji DH, et al. Tree Kernel-based Relation Extraction with Context Sensitive Structured Parse Tree Information[C]//ACL-2007. Prague, 2007 : 728-736.
  • 4Zhao Shubin,Grishman R. Extracting Relations with Integrated Information Using Kernel Methods[C]//ACL 2005. Ann Arbor.
  • 5Agichtein E, Gravano L. Snowball : extracting relations from large plain text collections[C]//ACM DL 2000. 2000:85-94.
  • 6Xu , Uszkoreit F H. Minimally supervised learning of relation extraction rules using semantic seeds[R]. A seminar talk at the National Center for Text Mining.
  • 7Xu, Uszkoreit F H, Li H. A seed-driven bottom-up machine learning framework for extracting relations of various eomplexity[C]//ACL 2007. Prague, 2007 : 584-591.
  • 8Lin D, Pantel P. Discovery of inference rules for question answering[J]. Natural Language Engineering, 2001,7 : 343-360.
  • 9Sekine S. Automatic paraphrase discovery based on context and kcywords between NE pairs[C]//IWP2005. South Korea, 2005 : 80-87.
  • 10Stevenson M, Greenwood M. Learning Information Extraction Patterns Using WordNet [C]// GWNC-2006. South Korea, 2006: 52-60.

同被引文献33

  • 1Agichtein E,Gravano L. Snowball:Extracting Relations from Large Plain-text Collections[A].Boston,USA:ACM Press,2000.85-94.
  • 2Brin S. Extracting Patterns and Relations from the World Wide Web[R].Palo Alto,USA:The Stanford University InfoLab,Technical Report:SIDL-WP-1999-0119,1998.
  • 3Banko M,Cafarella M J,Scderland S. Open Information Extraction from the Web[A].San Francisco,USA:Morgan Kaufmann Publishers Inc,2007.2670-2676.
  • 4Fader A,Soderland S,Etzioni O. Identifying Relations for Open Information Extraction[A].Stroudsburg,USA:Association for Computational Linguistics,2011.87-96.
  • 5Shinyama Y,Sekine S. Preemptive Information Extraction Using Unrestricted Relation Discovery[A].Stroudsburg,USA:Association for Computational Linguistics,2006.304-311.
  • 6de Marneffe M,MacCartney B,Manning C D. Generating Typed Dependency Parses from Phrase Structure Parsers[A].Genoa,Italy,2006.449-454.
  • 7Takamatsu S,Sato I,Nakagawa H. Reducing Wrong Labels in Distant Supervision for Relation Extraction[A].Stroudsburg,USA:Association for Computational Linguistics,2012.721-729.
  • 8Chang P C,Tseng H,Jurafsky D. Discriminative Reord-ering with Chinese Grammatical Relations Features[A].Stroudsburg,USA:Association for Computational Linguistics,2009.51-59.
  • 9Downey D,Etzioni O,Soderland S. A Probabilistic Model of Redundancy in Information Extraction[A].San Francisco,USA:Morgan Kaufmann Publishers Inc,2005.1034-1041.
  • 10李维刚,刘挺,李生.基于网络挖掘的实体关系元组自动获取[J].电子学报,2007,35(11):2111-2116. 被引量:7

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部