期刊文献+

基于多元特征的智能型生物识别模型 被引量:2

Multiple Features Based Intelligent Biometrics Verification Model
下载PDF
导出
摘要 随着生物识别技术的不断成熟,各种成形产品和设备不断进入市场,为生物识别手段代替传统的身份鉴别方法提供了基础。基于单一生物特征的识别模型由于过度依赖于一种识别模式,难以抵御针对型的欺骗方式。通过分析人类智能识别的行为,提出了一种基于多元特征的智能型生物识别模型。该模型能够同时捕捉目标的多种生物特征,通过选择可信度最高的识别模式进行组合识别,防止了针对型欺骗;通过引入多特征的交叉索引模型,提高了系统对复杂生物特征的检索效率;通过系统记录的历史数据的参与,实现了一种目标特征变化敏感的识别方式,使系统在某一特征变化大于预设阈值时进行更高精度的生物识别。基于多元特征的生物识别模型增加了系统的欺骗代价,在保证系统的识别精度和效率的同时,降低了系统遭受恶意侵入的风险。 With the development of biometrics verification technology, related devices and implements are put into mar- ket,which make it possible that the devices replace traditional means. But current single feature based verification de- vices depend on one single means and own very low cheat cost, which can not defense the specific cheat mode. We ana- lyzed the intelligent verification of human beings and brought forward one muhiple features based verification model. It can capture several biometric features at same time and select several features for verification according to need. The multiple features based cross index means can improve the search efficiency of complicated features. The joint of historic data in the model enables the system focuses on the changed features and provoke the verification with high precision. The multiple features based verification enhances the cheat cost and guarantees the verification accuracy to avoid the possible hostile access.
出处 《计算机科学》 CSCD 北大核心 2010年第2期221-224,共4页 Computer Science
基金 河南省创新型科技人才队伍建设工程项目(094200510009)资助
关键词 生物识别 多元特征 欺骗代价 Biometric verification,Multiple features,Cheat cost
  • 相关文献

参考文献11

二级参考文献118

  • 1孙冬梅,裘正定.生物特征识别技术综述[J].电子学报,2001,29(z1):1744-1748. 被引量:143
  • 2陈才扣,王正群,杨静宇,杨健.一种用于人脸识别的非线性鉴别特征融合方法[J].小型微型计算机系统,2005,26(5):793-797. 被引量:3
  • 3陈宏,田捷.检验配准模式的指纹匹配算法[J].软件学报,2005,16(6):1046-1053. 被引量:11
  • 4甘俊英,何国辉,梁宇.基于局部奇异值对称平均的人脸识别方法[J].计算机工程,2005,31(17):146-148. 被引量:2
  • 5[1]Glossary of biometrics terms [R].1998,Association for biometrics(AfB),Intemational Computer Security Association (ICSA).
  • 6[2]R Chellappa,et al.Humnan and machine recognition of face:a survey[J].Proc.IEEE,1995,83 (5):705-740.
  • 7[3]R Brunelli,T Poggio.Face recognition:features versus templates [J].IEEE Trans.PAMI,1993,15(10):1042-1052.
  • 8[4]D L Swets,J Weng.Using discriminant eigenfeatures for image retrieval[J].IEEE Trans.PAMI,1996,18 (8):831-836.
  • 9[5]B Moghaddam,et al.Probabilistic visual recognition for object recognition [J].IEEE Trans.PAMI,1997,19(7) :696-710.
  • 10[6]S Y Lee,et al.Recognition of humman front faces using knowledgebased feature extraction and neunofuzzy algorithm [J].Pattern Recognition,1996,29(11):1863-1876.

共引文献182

同被引文献20

  • 1田启明,罗予频,胡东成.Spiral刺绣针法的路径生成算法[J].计算机辅助设计与图形学学报,2006,18(1):9-13. 被引量:4
  • 2赵衍运,蔡安妮.指纹图像质量分析[J].计算机辅助设计与图形学学报,2006,18(5):644-650. 被引量:13
  • 3Jain A K. Biometric recognition: Q&-A [J]. Nature,2007,449(6) : 38-40.
  • 4Maltoni M, Maio D,Jain A K,et al. Handbook ofFingerprint Recognition[M]. 2nd ed. London: SpringerPress, 2009.
  • 5Jain A K, Ross A. Multibiometric systems [ J ].Communications of the ACM, 2004, 47 (1): 34-40.
  • 6Darwish A A,Zaki W M,Saad O M, et al. Humanauthentication using face and fingerprint biometrics[C] / Proceedings of the 2nd International Conferenceon Computational Intelligence, Communication Systemsand Networks? July 28-30,2010,Liverpool, UnitedKingdom. [S. 1. ] : IEEE Computer Society, 2010:274-278.
  • 7Hong L, Jain A . Integrating faces and fingerprints forpersonal identification [ J ]. IEEE Transactions onPattern Analysis and Machine Intelligence, 1998,20(12): 1295-1307.
  • 8Ross A, Govindarajan R . Feature level fusion usinghand and face biometrics [C] // Proceedings of SPIEConference on Biometric Technology for HumanIdentification II, March 28-29,2005,Orlando, UnitedStates. [S. 1. ] : Citeseer,2005 ,5779 : 196-204.
  • 9Rattani A, Kisku D R,Bicego M,et al. Feature levelfusion of face and fingerprint biometrics [ C ] //Proceedings of the First IEEE International Conferenceon Biometrics: Theory, Applications, and Systems,September 27-29,2007,Crystal City, VA,UnitedStates. Piscataway, N.J.,USA: IEEE Press, 2007 :1-6.
  • 10Zhou X L,Bhanu B, Feature fusion of face and gait forhuman recognition at a distance in video [ C ] //Proceedings of the 18th International Conference onPattern Recognition, August 20-24,2006, HongKong, China. [S. 1. ] : IEEE Computer Society , 2006 :529-532.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部