期刊文献+

基于相关向量回归的仿真元建模方法 被引量:4

Simulation Metamodeling Approach Based on Relevance Vector Regression
下载PDF
导出
摘要 针对支持向量回归元模型存在的不足,提出将相关向量回归应用于仿真元建模,使用多个不同维度和非线性程度的基准测试函数,在元模型精确性、采样技术、样本规模、模型维度和非线性程度等多方面与多项式回归、Kriging、径向基函数、支持向量回归4种方法进行对比研究,结果证明该方法具有较高的精确性和鲁棒性。 Aiming at the shortcoming of support vector regression metamodel, Relevance Vector Regression(RVR) is investigated as an alternative metamodeling approach. Using several benchmark test functions with varying model dimensions and degrees of nonlinearity, RVR is compared with four metarnodeling approaches, including polynomial regression, Kriging, radial basis function and support vector regression. Several performance criterions are considered, including metamodel accuracy, effect of sampling techniques, effect of sample size, effect of model dimensions and degrees of nonlinearity. Results prove that RVR approach can achieve higher accuracy and more robustness.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第3期24-27,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60704038)
关键词 元建模 相关向量回归 支持向量回归 metamodeling Relevance Vector Regression(RVR) support vector regression
  • 相关文献

参考文献7

  • 1Kleijnen J P C, Robert G S. A Methodology for Fitting and Validating Metamodels in Simulation[J]. European Journal of Operational Research, 2000, 120(1): 14-29.
  • 2Clarke S M, Griebsch J H, Simpson T W. Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses[J]. Journal of Mechanical Design, 2005, 127(6): 1077-1087.
  • 3Tipping M E. Sparse Bayesian Learning and the Relevance Vector Machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211-244.
  • 4Hussain M F, Barton R R, Joshi S B. Metamodeling: Radial Basis Functions, Versus Polynomials[J]. European Journal of Operational Research, 2002, 138(1):142-154.
  • 5Jin Ruichen, Chen Wei, Simpson T W. Comparative Studies of Metamodeling Techniques Under Multiple Modeling Criteria[J].Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13.
  • 6Meckesheimer M, Booker A J, Barton R R, Simpson T W. Computationally Inexpensive Metamodel Assessment Strategies[J]. AIAA Journal, 2002, 40(10): 2053-2060.
  • 7Giunta A A, Watson L T. A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models[C]//Proc. of the 7th AIAA Symposium on Multidisciplinary Analysis and Optimization. St Louis, MO, USA: [s. n.], 1998.

同被引文献13

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部