期刊文献+

基于变精度粗糙集的Web用户聚类方法 被引量:2

Web User Clustering Method Based on Variable Precision Rough Set
下载PDF
导出
摘要 针对Web使用挖掘中的用户聚类问题,提出一种基于变精度粗糙集理论的粗糙聚类方法,该方法放宽经典粗糙集中不可区分关系的传递性将其扩展为相容关系,使用变精度粗糙集的相对错误分类率β来形成新的相似β上近似,从而将一个用户划分到多个聚类,该方法不需要区分用户会话,降低了数据预处理的难度,通过理论推导和实例证明了其有效性。 Focus on solving the user clestering issues, a rough clustering method based on the variable precision rough set theory is proposed. The indiscernibility relation in classical rough set is extended to a tolerance relation with the transitivity property being relaxed. The new proposed similarity β upper approximations are formed using the relative degree of misclassification β, so a user can be assigned to more than one cluster, and this approach does not need to identify the users' sessions, therefore, the complexity of data preprocessing decreases. Experimental example shows the effectiveness of the proposed algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第3期44-46,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60674056) 辽宁省教育厅基金资助项目(20031066)
关键词 粗糙聚类 变精度粗糙聚类 相似β上近似 WEB使用挖掘 rough clustering variable precision rough clustering similarity,8 upper approximation Web usage mining
  • 相关文献

参考文献5

  • 1De S K, Krishna P R. Clustering Web Transactions Using Rough Approximation[J]. Fuzzy Sets and Systems, 2004, 148(1): 134-138.
  • 2Kumar P, Krishna P R, Bapi R S, et al. Rough Clustering of Sequential Data[J]. Data & Knowledge Engineering, 2007, 63(2): 183-199.
  • 3陈子军,王鑫昱,李伟.一种Web日志会话识别的优化方法[J].计算机工程,2007,33(1):95-97. 被引量:18
  • 4刘立军,周军,梅红岩.Web使用挖掘的数据预处理[J].计算机科学,2007,34(5):200-201. 被引量:22
  • 5Liu Haibin, Keselj V. Combined Mining of Web Server Logs and Web Contents for Classifying User Navigation Patterns and Predicting Users' Future Requests[J]. Data & Knowledge Engineering, 2007, 61(2): 304-330.

二级参考文献13

  • 1Facca F M,Lanzi P L.Mining Interesting Knowledge From Weblogs:a Survey[J].Data and Knowledge Engineering,2005,53(3):225-241.
  • 2Cooley R,Mobasher B,Srivastava J.Data Preparation for Mining World Wide Web Browsing Patterns[J].Journal of Knowledge and Information Systems,1999,1(1):5-32.
  • 3Catledge L,Pitkow J.Characterizing Browsing Strategies in the World_Wide_Web[J].Computer Networks and ISDN Systems,1995,27(6):1065-1073.
  • 4Chen M S,Park J S,Yu P S.Efficient Data Mining for Path Traversal Patterns[J].IEEE Transactions on Knowledge and Data Engineering,1998,10(2):209-221.
  • 5Xiao Yongqiao,Dunham M H.Efficient Mining of Traversal Patterns[J].Data and Knowledge Engineering,2001,39(2):191-214.
  • 6Pyle D.Data Preparation for Data Mining.Morgan Kaufmann Publishers Inc,San Francisco,CA,1999.540
  • 7Cooley R,Mobasher B,Srivastava J.Data preparation for mining World Wide Web browsing patterns.Journal of Knowledge and Information Systems,1999,1(1):5~32
  • 8Tan P,Kumar V.Discovery of Web robot sessions based on their navigational patterns.Data Mining and Knowledge Discovery,2002,6:9~35
  • 9Jetal S.Web Usage Mining:Discovery and application of usage patterns from Web data[J].SIGKDD Explorations,2000,1(2):12~23
  • 10Cooley R,Mobasher B,Srivastava J.Data Preparation for Mining World Wide Web Browsing Patterns[J].Journal of Knowledge and Information Systems,1999,1(1):5~32

共引文献38

同被引文献36

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部