摘要
研究了[r→(t∧s)]≡([r→t)∧(r→s)],[r→(t∨s)]≡([r→t)∨(r→s)],([p∧q)→r]≡([p→r)∨(q→r)],([p∨q)→r]≡([p→r)∧(q→r)]4个分配性方程,它们在模糊集理论中的形式分别是(Ir,T(1t,s))=T(2(Ir,t),(Ir,s)),I(r,S(1t,s))=S(2(Ir,t),(Ir,s)),(IT(1p,q),r)=S(1(Ip,r),(Iq,r)),(IS(1p,q),r)=T(1(Ip,r),(Iq,r)),其中p,q,r,s,t∈[0,1],T1、T2为任意三角模,S1、S2为任意三角余模,给出了I为QL-、D-蕴涵时满足分配性方程的充要条件。
Four distributivity equations[r→(t s )]-=[(r→t) (r→s)],[r→(t s)]=[(r→t) (r→s)],[(p q)→r]=[(p→r) (q→r)],[(p q )→r] = [(p→r) (q→r)] are discussed.The generalized versions of these distributivity equations are I(r, T1(t, s ) )=T2(I(r, t), I( r ,s ) ) I( r ,S1( t,s ) )=S2( I(r ,t ) ,I(r,s ) ),I( T1(p,q ),r )=S1 (I(p ,r )I( q ,r ) ),I( S1(p ,q ),r )=T1( I(p,r ) ,I( q ,r ) ),p ,q ,r,s ,t ∈ [0,1],where T1,T2 are a t-norm,St,S2 are a t-conorm.Then this paper proposes the sufficient and necessary conditions for QL-,D-implications to satisfy these distributivity equations.
出处
《计算机工程与应用》
CSCD
北大核心
2010年第4期36-38,共3页
Computer Engineering and Applications
基金
国家自然科学基金No.60663002,No.10726070
江西省自然科学基金No.0611052~~