期刊文献+

超超临界机组用P92钢焊接细晶区高温蠕变行为研究 被引量:12

High-temperature Creep Behaviour of Fine Grained Heat-affected Zone in P92 Weldment Used in Ultra Supercritical Units
下载PDF
导出
摘要 用热模拟方法制备了P92钢的焊接细晶区(fine grained heat-affected zone,FGHAZ)试样,观察细晶区的显微组织,研究比较细晶区与母材在650℃、90~120MPa蠕变行为的差异。研究结果表明,与母材相比,细晶区的蠕变性能出现劣化现象,稳态蠕变速率明显增大,蠕变断裂寿命缩短。可用幂律蠕变定律来描述细晶区稳态蠕变速率与应力之间的关系。当应力≥100MPa时,n为15.1;应力小于100MPa时,n降低为8.64。高应力(≥100MPa)下,细晶区蠕变断裂主要受晶内空位和裂纹形成与扩展所控制,且其断裂数据遵循Monkman-Grant规律。与母材相比,细晶区M23C6相数量和尺寸差别不大,但其基体组织有显著改变,板条亚结构特征不明显。FGHAZ蠕变性能的劣化可能与基体组织改变有关。 Welding thermal cycle was given to the specimens to simulate fine grained heat-affected zone (FGHAZ) in P92 weldment. The microstructures of FGHAZ was examinated and the high-temperature creep behavior of FGHAZ was investigated at 650 ℃ under the applied stress of 90-120 MPa. The results show that the creep properties of FGHAZ is strongly degraded compared with the base memtal, which exhibits the higher steady creep-rate and shorter time to creep fracture. The power law equation can describe the steady creep-rate dependent on applied stress. The stress exponent n of FGHAZ is distinguished between two regions with n=15.1 at high stresses (more than 100 MPa) and n=8.64 at lower stresses. At high stresses, it is found that the creep fracture of FGHAZ is controlled by the nucleation and propagation of microvoids and cracks, and the creep rupture data obey the Monkman-Grant relationship. Although the difference in the amount and size of M23C6 precipitates is smaller for the FGHAZ and base metal, the matrix of FGHAZ shows no lath substructure, which is probably attributed to the degradation of its creep properties.
出处 《中国电机工程学报》 EI CSCD 北大核心 2010年第2期104-108,共5页 Proceedings of the CSEE
基金 中国博士后科学基金资助项目(20080430997)
关键词 9%~12%Cr耐热钢 焊接 细晶区 蠕变 9%-12% Cr resistant heat steel welding fine grained heat-affected zone (FGHAZ) creep
  • 相关文献

参考文献17

  • 1Tabuchi M, Watanabe T, Kubo K, et al. Creep crack growth behavior in the HAZ of weldments of W containing high Cr steel[J]. International Journal of Pressure Vessel and Piping, 2001(78): 779-784.
  • 2Shinozaki K, Li Dejun, Kuroki H, et al. Observation of type IV cracking in weld joints of high chromium ferritic heat resistant steels[J]. Science and Technology of Welding and Joining, 2003,8(4): 289-295.
  • 3Shinozaki K, Li Dejun, Kuroki H, et al. Analysis of degradation of creep strength in heat-affected zone of weldment of high Cr heat-resisting steels based on void observation[J]. ISIJ International, 2002, 42(12): 1578-1584.
  • 4Li D, Shinozaki K, Kuroki H. Stress-strain analysis of creep deterioration in heat affected weld zone in high Cr ferritic heat resistantsteel[J]. Materials Science and Technology, 2003, 19(9): 1253-1260.
  • 5Albert S K, Matsui M, Hongo H, et al. Creep rupture properties of HAZs of a high Cr ferritic steel simulated by a weld simulator [J]. Intemational Joumal of Pressure Vessel and Piping, 2004(81): 221-234.
  • 6Tabuchi M, Matsui M, Watanabe T, et al. Creep fracture analysis of W Strengthened high Cr steel weldment[J]. Materials Science Research International, 2003, 9(1); 23-28.
  • 7中华人民共和国国家发展和改革委员会.DL/T940-2005火力发电厂蒸汽管道寿命评估技术导则[S].北京:中国电力出版社,2005.
  • 8Li Dejun, Shinozaki K, Kuroki H, et al. Analysis of factors affecting type IV cracking in welded joints of high chromium ferritic heat resistant steels[J]. Science and Technology of Welding and Joining, 2003, 8(4): 296-302.
  • 9Abe F, Tabuchi M. Microstructure and creep strength of welds in advanced ferritic power plant steels[J]. Science and Technology of Welding andJoining, 2004, 9(1): 22-30.
  • 10Mamyama K, Sawada K, Koike J I. Strengthening mechanisms of creep resistant tempered martensitic steel[J]. ISIJ International, 2001, 41(6): 641-653.

二级参考文献11

  • 1[1]JOHNSON D R,CHEN X F,OLIVER B F,et al.Processing and mechanical properties of in-situ composites from the NiAl(Cr,Mo)eutectic systems[J].Intermetallics,1995(3):99-113.
  • 2[2]JOHNSON D R,OLIVER B F,NOEBE R D,et al.NiAl-baseed polyphase in-situ composites in the NiAl systerm[J].Intermetallics,1995(3):493-503.
  • 3[3]CUI C Y,CHEN Y X,GUO J T,et al.Investigation of directionally solidified NiAl-28Cr-5.5Mo-0.5Hf composite[J].Materials Letter,2000(5):303-308.
  • 4[4]GUO J T,CUI C Y,CHE Y X N,et al.Interface and mechanical property of the DS NiAl/Cr(Mo,Hf)composite[J].Intermetallics,2001(9):28-38.
  • 5[6]WHTTEWNBERGER J D,NOEBE R D.Elevated temperature compressive propertioes of Zr-modified NiAl[J].Materials Transactions,1996(27A):2628-2641.
  • 6[7]WEERTMAN J.Steady-state creep through dislocation climb[J].Applied Physics Journal,1957(28):362-365.
  • 7[8]TIEN J K,ANSELL G S.Resistance to creep,alloy and microstructure design[M]. New York:Academy Press,1976.
  • 8袁超,郭建亭,杨洪才,王淑荷.定向凝固镍基高温合金的高温蠕变[J].金属学报,1998,34(8):858-863. 被引量:7
  • 9袁超,郭建亭,王铁利,杨洪才,王淑荷,张皓.施载方向对定向凝固镍基高温合金高温蠕变行为的影响[J].金属学报,1998,34(7):689-695. 被引量:6
  • 10崔传勇,郭建亭.NiAl-28Cr-5Mo-1Hf多相金属间化合物的显微组织及力学性能研究[J].金属学报,1999,35(5):477-481. 被引量:24

共引文献49

同被引文献129

引证文献12

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部