期刊文献+

低信噪比下基于短时谱估计的语音增强 被引量:2

Speech enhancement based on short-time spectral amplitude estimates in low SNR
原文传递
导出
摘要 针对在弱语音信号和低输入信噪比(SNR)情况下,基于短时谱估计的语音增强算法性能下降的问题,提出了一种结合软判决信息和人耳听觉掩蔽效应的短时谱估计算法。该算法在最小均方误差准则下引入语音存在的概率,得到软判决修正的增益函数,然后利用掩蔽门限不断地调整增益函数,进而调整噪声的抑制程度,保护微弱的语音信号,减少语音谱的失真。客观测试和主观试听表明,该算法在信噪比增益以及语音的可懂度、自然度方面都优于传统的最小均方误差估计算法。 This paper presents a short-time spectral amplitude estimation approach based on soft-decision information and the masking properties of the human auditory system to improve speech enhancement of weak speech signals in low signal to noise ratio (SNR) input environments. The approach introduces the probability of speech presence into the minimum mean square error (MMSE) estimate to get a soft-decision modified gain function. Then, a masking threshold is used to continually adjust the MMSE estimate gain function which adjusts the noise reduction. This approach significantly reduces attenuation of weak speech signals to reduce spectral distortion of the enhanced speech. Objective measurements combined with informal subjective listening tests show that the algorithm is superior to the traditional MMSE estimate method, not only in SNR gains, but also in speech intelligibility and naturalness.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第1期149-152,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(60572081)
关键词 语音信号处理 语音增强 最小均方误差 听觉掩蔽效应 软判决 信噪比(SNR) speech signal processing speech enhancement minimum mean square error (MMSE) masking properties soft-decision signal to noise ratio (SNR)
  • 相关文献

参考文献7

  • 1Boll S. Suppression of acoustic noise in speech using spectral subtraction [J]. IEEE Trans on Acoustics, Speech, and Signal Processing, 1979, 27(2) :113 - 120.
  • 2Ephraim Y, Malah D. Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator [J]. IEEE Trans on Acoustics, Speech, and Signal Processing, 1984, 32(6) : 1109 - 1121.
  • 3MeAulay R, Malpass M. Speech enhancement using a soft decision noise suppression filter [J]. IEEE Trans on Acoustics, Speech, and Signal Processing, 1980, 28(2): 137 - 145.
  • 4Malah D, Cox R, Accardi A. Tracking speech-presence uncertainty to improve speech enhancement in non-stationary noise environments [C]//Proc IEEE Int Conf Acoustics, Speech, Signal Processing (ICASSP). Piscataway, NJ: IEEE Press, 1999: 789-792.
  • 5Johnston J D. Transform coding of audio signals using perceptual noise criteria [J]. IEEE Journal on Selected Areas in Communications, 1988, 6(2): 314- 323.
  • 6Shao Y, Chang C H. A generalized time-frequency subtraction method for robust speech enhancement based on wavelet filter banks modeling of human auditory system [J]. IEEE Trans on Syst, Man and Cybernetic-Cybernetics, 2007, 37(4) : 877 -899.
  • 7Martin R, Malah D, Cox R V, et al. A noise reduction preprocessor for mobile voice communication [J]. EURASIP J on Appl Signal Processing, 2004, 8:1046 - 1058.

同被引文献24

  • 1Cheng Q, Lei H, and So H C. Improved unitary root-MUSIC for DOA estimation based on pseudo-noise resampling[J]. IEEE Signal Processing Letters, 2014, 21(2): 140-144.
  • 2Zeng W, So C and Lei H. /p-MUSIC: Robust direction-of- arrival estimator for impulsive noise environments[J]. IEEE Transactions on Signal Processing, 2013, 61(17): 4296-4308.
  • 3Vincent F, Besson O, and Chaumette E. Approximate maximum likelihood direction of arrival estimation for two closely spaced sources[C]. Proceedings of the 2013 IEEE 5th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), St. Martin, France, 2013: 320-323.
  • 4Heidenreich P and Zoubir M. Fast maximum likelihood DOA estimation in the two-target case with applications to automotive radar[J]. Signal Processing, 2013, 93(12): 3400-3409.
  • 5Lee Y, Hudson E, and Yao K. Acoustic DOA estimation: an approximate maximum likelihood approach[J]. IEEE Systems Journal, 2014, 8(1): 131-141.
  • 6Park S, Choi H, Yang W, et al.. Direction of arrival estimation using weighted subspace fitting with unknown number of signal sources[C]. Proceedings of the llth International Conference on Advanced Communication Technology, Piscataway, USA, 2009: 2295-2298.
  • 7Wang H, Kay S, and Saha S. An importance sampling maximum likelihood direction of arrival estimator[J]. IEEE Transactions on Signal Processing, 2008, 56(10): 5082-5092.
  • 8Li X and Huang J. Bayesian high resolution DOA estimator based on importance sampling[C]. Proceedings of IEEE Oceans 2005, Washington, D.C., USA, 2005, 1: 611-615.
  • 9Di C, Elio D, and Giovanni J. Wideband source localization by space-time MUSIC subspace estimation[C]. Proceedings of 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), Trieste, Italy, 2013: 331-336.
  • 10Choi W and Sarkar K. Minimum norm property for the sumof the adaptive weights for a direct data domain least squares algorithm[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(3): 1045-1050.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部