期刊文献+

混合应用三类四边形面积坐标构造八结点四边形膜元 被引量:2

EIGHT-NODE QUADRILATERAL MEMBRANE ELEMENT FORMULATED BY MIXED USE OF THE THREE TYPES OF THE QUADRILATERAL AREA COORDINATE METHOD
原文传递
导出
摘要 三类四边形面积坐标已先后提出。如果对三类面积坐标加以混合应用,这将使构造四边形单元的工作更加灵活多样,具有更加广阔的优选空间。该文混合应用三类四边形面积坐标构造一个8结点四边形膜元。新单元具有如下优点:1)新单元具有优异性能,特别是对网格畸变不敏感,优于8结点等参元,显示出三类四边形面积坐标的共同优点;2)新单元的推导过程和主要列式都非常简洁。这是由于巧妙地混合应用三类面积坐标并进行优选而取得的结果。 Three types of the quadrilateral area coordinate method have been proposed. If these three types are used mixedly, the optimal model of quadrilateral element will then be obtained. In this paper, these three types of the quadrilateral area coordinate method are mixedly used to develop one eight-node quadrilateral membrane element. The new element exhibits the following advantages: i) the new element possesses distinguished performance and is insensitive to mesh distortion. In contrast, the eight-node isoparametric element Q8 is very sensitive to mesh distortion. This advantage reflects the common characteristics of the three types ( I, II, III)of the quadrilateral area coordinate method, ii) The formulation procedure and the expression of the shape function matrix of the new element are very simple. This advantage is due to the ingenious and optimal combination of the three types ( I, II, III) of the quadrilateral area coordinate method.
出处 《工程力学》 EI CSCD 北大核心 2010年第2期1-6,共6页 Engineering Mechanics
关键词 有限元 四边形元 面积坐标 网格畸变 形函数 finite element quadrilateral element area coordinate mesh distortion shape function
  • 相关文献

参考文献8

  • 1Long Yuqiu, Li Juxian, Long Zhifci. Area coordinates used in quadrilateral elements [J]. Communications in Numerical Methods in Engineering, 1999, 15(8): 533- 545.
  • 2Chen X M, Cen S, Fu X R, Long Y Q. A new quadrilateral area coordinate method (QAC-II ) for developing quadrilateral finite element models [J]. International Journal for Numerical Methods in Engineering, 2008, 73(13): 1911- 1941.
  • 3龙驭球,龙志飞,王丽.四边形单元第三类面积坐标系统[J].工程力学,2009,26(2):1-4. 被引量:5
  • 4王丽,龙志飞,龙驭球.用第三类四边形面积坐标构造一个四结点四边形膜元[J].工程力学,2009,26(8):1-5. 被引量:2
  • 5Lee N S, Bathe K J. Effects of element distortion on the performance of isoparametric elements [J]. International Journal for Numerical Methods in Engineering, 1993, 36: 3553 -3576.
  • 6Soh A K, Long Y Q, Ceil S. Development of eight-nodo quadrilateral membrane elements using the area coordinates method [J]. Computational Mechanics, 2000, 25(4): 376-384.
  • 7岑松,龙志飞,张春生.两个采用面积坐标的四边形八结点膜元[J].第7届全国结构工程学术会议论文集(Ⅰ),石家庄,1998,I(增刊):237-241.
  • 8Wilson E L, Taylor R L, Doherty W P, Ghabussi T. Incompatible displacement models [C]. Fenven ST. Numerical and Computer Methods in Structural Mechanics, Academic Press: New York, 1973: 43-57.

二级参考文献18

  • 1陈万吉 唐立民.等参拟协调元[J].大连工学院学报,1981,20(1):63-74.
  • 2Long Yuqiu, Li Juxian, Long Zhifei. Area coordinates used in quadrilateral elements [J]. Communications in Numerical Methods in Engineering, 1999, 15(8): 533-545.
  • 3Chen X M, Cen S, Fu X R, Long Y Q. A new quadrilateral area coordinate method (QAC-II) for developing quadrilateral finite element models [J]. International Journal for Numerical Methods in Engineering, 2008, 73(13): 1911 - 1941.
  • 4Long Z F, Li J X, Cen S, Long Y Q. Some basic formulae for area coordinates used in quadrilateral elements [J]. Communications in Numerical Methods in Engineering, 1999, 15(12): 841-852.
  • 5Chen X M, Cen S, Long Y Q, Yao Z H. Membrane elements insensitive to distortion using the quadrilateral area coordinate method [J]. Computers and Structures, 2004, 82(1): 35-54.
  • 6Cen S, Du Y, Chen X M, Fu X R. The analytical element stiffness matrix of a recent 4-node membrane dement formulated by the quadrilateral area coordinate method [J]. Communications in Numerical Methods in Engineering, 2007, 23(12): 1095-1110.
  • 7Soh A K, Long Y Q, Cen S. Development of eight-node quadrilateral membrane elements using the area coordinates method [J]. Computational Mechanics, 2000, 25(4): 376-384.
  • 8Cen S, Long Y Q, Yao Z H, Chiew S P. Application of the quadrilateral area coordinate method: A new element for Mindlin-Reissner plate [J]. International Journal for Numerical Methods in Engineering, 2006, 66(1): 1 -45.
  • 9Long Yuqiu, Li Juxian, Long Zhifei, Cen Song. Area coordinates used in quadrilateral elements [J]. Communications in Numerical Methods in Engineering, 1999, 15(8): 533-545.
  • 10Chen X M, Cen S, Fu X R, Long Y Q. A new quadrilateral area coordinate method (QAC-Ⅱ) for developing quadrilateral finite element models [J]. International Journal for Numerical Methods in Engineering, 2008, 73(13): 1911-1941.

共引文献4

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部