期刊文献+

基于相空间重构理论的天津市近海水质混沌特性研究 被引量:3

Study on chaotic characteristics of Tianjin coastal water quality by phase space reconstruction theory
下载PDF
导出
摘要 针对我国近海水质污染呈现的复杂非线性特征,通过对混沌理论中的相空间重构方法进行研究,提出了一种新的完全基于环境监测数据的近海水质分析方法。以天津市近岸海域为例,首先,根据相空间重构理论,对近海各监测点的1维COD时间序列进行多维相空间重构,求得最佳嵌入维数mmin和吸引子关联维数D;然后,采用Wolf方法计算最佳嵌入维数mmin下重构相空间的最大Lyapunov指数λ1。计算结果显示各个监测点的关联维数D均在3.3左右,最大Lyapunov指数λ1均大于0,表明近海水质COD时间序列具有明显的混沌特征,近海水质系统是一个多维系统,貌似随机无规律的近海水质系统具有内在的、固有的规律。应用表明,该方法实用性强,为进一步采用混沌理论对近海水质进行预测提供了理论依据,非常有利于近海水环境的管理。 Against the nonlinear pollution characteristics of Chinese coast ,a new method for analyzing the characteristics of coastal water pollution was proposed based on the chaos theory. Taking the Tianjin coast as an example, firstly, the phase space reconstruction method was used to reconstruct the multi-dimension phase space for COD time series of each monitoring point. And the best embedded space dimension mmin and attraetor's association dimension D were computed. Secondly ,the Wolf method was used to compute the biggest Lyapunov exponent minin. The results showed that all the association dimensions λ1 were around 3.3, and the biggest Lyapunov exponents λ1 〉0. It proved that the coastal water quality pollution presented the chaotic characteristics. The coastal water quality system is a multi-dimension system,and has inherent orderliness. The conclusion summarized in this paper could provide the theory basis for the coastal water quality forecasting which based on the chaos theory. It can be found from the application that the method proposed in this paper is practical and suitable for the environmental management in the coastal water.
出处 《海洋环境科学》 CAS CSCD 北大核心 2010年第1期104-107,共4页 Marine Environmental Science
基金 天津市自然科学基金项目(07JCYBJC07200) 国家水体污染控制与治理科技重大专项(2008ZX07314-004)
关键词 近海 水质 混沌理论 相空间重构 关联维数 LYAPUNOV指数 coastal water water quality chaos theory phase space reconstruction association dimension Lyapunov exponent
  • 相关文献

参考文献7

  • 1YUAN D,LIN B,FALCONER R A,et al. Development of an integrated model for assessing the impact of diffuse and point source pollution on coastal waters[ J]. Environmental Modelling & Software, 2007,22 : 871-879.
  • 2CHEN Q W,MYNETT A E. Modelling algal blooms in the Dutch coastal waters by integrated numerical and fuzzy cellular automata approaches[ J]. Ecological Modelling,2006,199:73-81.
  • 3牛志广,张宏伟,辛志伟.基于log-logistic概率分布的近海水质组合预测方法研究[J].系统工程理论与实践,2006,26(5):111-116. 被引量:6
  • 4SIVAKUMAR B. Chaos theory in hydrology:important issues and interpretations[ J]. Journal of Hydrology,2000,227 : 1-20.
  • 5GRASSBERGER P,PROCACCIA I. Measuring the strangeness of strange attractors[ J]. Physica D, 1983,9 : 189-208.
  • 6张宾,李月,卢金.Lyapunov特性指数用于混沌判据[J].吉林大学学报(信息科学版),2004,22(2):111-114. 被引量:19
  • 7WOLF A, SWIFT J B, SWINNEY H L, et al. Determining Lyapunov exponents from a time series[ J]. Physica, 1985,16 ( 3 ) : 285-317.

二级参考文献15

  • 1傅立.灰色系统理论及应用[M].北京:中国科学技术文献出版社,1992..
  • 2牛志广.近岸海域水环境容量的研究[D].天津:天津大学,2005.
  • 3James I D.Modelling pollution dispersion,the ecosystem and water quality in coastal waters:a review[J].Environmental Modelling & Software,2002,17(4):363-385.
  • 4Su Jilan,Dong Lixian.Application of numerical models in marine pollution research in China[J].Marine Pollution Bulletin,1999,39(2):73-79.
  • 5Zhang Qing,Stephen J.Stanley.Real-time water treatment process control with artificial neural networks[J].J.of Environmental Engineering,1999,125(2):45-50.
  • 6MacKay D J C.A practical bayesian framework for backpropagation networks[J].Neural Computation,1992,4(3):448-472.
  • 7Singh K P,Warsono A A,Bartolucci,et al.Mathematical modeling of environmental data[J].Mathematical and Computer Modeling,2001,33:793-800.
  • 8刘国东,丁晶.BP 网络用于水文预测的几个问题探讨[J].水利学报,1999,30(1):65-70. 被引量:117
  • 9江学军,唐焕文.前馈神经网络泛化性能力的系统分析[J].系统工程理论与实践,2000,20(8):36-40. 被引量:44
  • 10张青.基于神经网络最优组合预测方法的应用研究[J].系统工程理论与实践,2001,21(9):90-93. 被引量:52

共引文献23

同被引文献29

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部